TRAF4 Silencing Induces Cell Apoptosis and Improves Retinoic Acid Sensitivity in Human Neuroblastoma

Neurochem Res. 2023 Jul;48(7):2116-2128. doi: 10.1007/s11064-023-03882-3. Epub 2023 Feb 16.

Abstract

Neuroblastoma (NB) is a pediatric malignancy that arises in the peripheral nervous system, and the prognosis in the high-risk group remains dismal, despite the breakthroughs in multidisciplinary treatments. The oral treatment with 13-cis-retinoic acid (RA) after high-dose chemotherapy and stem cell transplant has been proven to reduce the incidence of tumor relapse in children with high-risk neuroblastoma. However, many patients still have tumors relapsed following retinoid therapy, highlighting the need for the identification of resistant factors and the development of more effective treatments. Herein, we sought to investigate the potential oncogenic roles of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family in neuroblastoma and explore the correlation between TRAFs and retinoic acid sensitivity. We discovered that all TRAFs were efficiently expressed in neuroblastoma, but TRAF4, in particular, was found to be strongly expressed. The high expression of TRAF4 was associated with a poor prognosis in human neuroblastoma. The inhibition of TRAF4, rather than other TRAFs, improved retinoic acid sensitivity in two human neuroblastoma cell lines, SH-SY5Y and SK-N-AS cells. Further in vitro studies indicated that TRAF4 suppression induced retinoic acid-induced cell apoptosis in neuroblastoma cells, probably by upregulating the expression of Caspase 9 and AP1 while downregulating Bcl-2, Survivin, and IRF-1. Notably, the improved anti-tumor effects from the combination of TRAF4 knockdown and retinoic acid were confirmed in vivo using the SK-N-AS human neuroblastoma xenograft model. In conclusion, the highly expressed TRAF4 might be implicated in developing resistance to retinoic acid treatment in neuroblastoma, and the combination therapy with retinoic acid and TRAF4 inhibition may offer significant therapeutic advantages in the treatment of relapsed neuroblastoma.

Keywords: Apoptosis; Neuroblastoma; Retinoic acid; Sensitivity; TRAF.

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Apoptosis
  • Cell Line, Tumor
  • Humans
  • Neoplasm Recurrence, Local / drug therapy
  • Neuroblastoma* / metabolism
  • TNF Receptor-Associated Factor 4 / metabolism
  • Tretinoin / pharmacology
  • Tretinoin / therapeutic use

Substances

  • Antineoplastic Agents
  • TNF Receptor-Associated Factor 4
  • TRAF4 protein, human
  • Tretinoin