Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9

J Biol Chem. 2015 Apr 10;290(15):9812-22. doi: 10.1074/jbc.M114.616219. Epub 2015 Feb 24.

Abstract

The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.

Keywords: Diabetes; Gene Knockout; Pdx1; Protein Methylation; Set7/9; Transcription; pancreatic Islet.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Line, Tumor
  • HEK293 Cells
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism*
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism*
  • Humans
  • Immunoblotting
  • Insulin-Secreting Cells / metabolism*
  • Lysine / genetics
  • Lysine / metabolism*
  • Methylation
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Molecular Sequence Data
  • NIH 3T3 Cells
  • Protein Binding
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tandem Mass Spectrometry
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Transcription, Genetic

Substances

  • Homeodomain Proteins
  • Trans-Activators
  • pancreatic and duodenal homeobox 1 protein
  • Histone-Lysine N-Methyltransferase
  • Lysine