The ARF tumor-suppressor controls Drosha translation to prevent Ras-driven transformation

Oncogene. 2014 Jan 16;33(3):300-7. doi: 10.1038/onc.2012.601. Epub 2013 Jan 14.

Abstract

ARF is a multifunctional tumor suppressor that acts as both a sensor of oncogenic stimuli and as a key regulator of ribosome biogenesis. Recently, our group established the DEAD-box RNA helicase and microRNA (miRNA) microprocessor accessory subunit, DDX5, as a critical target of basal ARF function. To identify other molecular targets of ARF, we focused on known interacting proteins of DDX5 in the microprocessor complex. Drosha, the catalytic core of the microprocessor complex, has a critical role in the maturation of specific non-coding RNAs, including miRNAs and ribosomal RNAs (rRNAs). Here, we report that chronic or acute loss of Arf enhanced Drosha protein expression. This induction did not involve Drosha mRNA transcription or protein stability but rather relied on the increased translation of existing Drosha mRNAs. Enhanced Drosha expression did not alter global miRNA production but rather modified expression of a subset of miRNAs in the absence of Arf. Elevated Drosha protein levels were required to maintain the increased rRNA synthesis and cellular proliferation observed in the absence of Arf. Arf-deficient cells transformed by oncogenic Ras(V12) were dependent on increased Drosha expression as Drosha knockdown was sufficient to inhibit Ras-dependent cellular transformation. Thus, we propose that ARF regulates Drosha mRNA translation to prevent aberrant cell proliferation and Ras-dependent transformation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Blotting, Western
  • Cell Cycle / genetics
  • Cell Proliferation
  • Cell Transformation, Neoplastic / genetics*
  • Cell Transformation, Neoplastic / metabolism
  • Cells, Cultured
  • Cyclin-Dependent Kinase Inhibitor p16 / genetics*
  • Cyclin-Dependent Kinase Inhibitor p16 / metabolism
  • Embryo, Mammalian / cytology
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Gene Expression
  • Mice
  • Mice, Knockout
  • MicroRNAs / genetics
  • Protein Biosynthesis
  • RNA Interference
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Ribosomal / genetics
  • RNA, Ribosomal / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Ribonuclease III / genetics*
  • Ribonuclease III / metabolism
  • ras Proteins / genetics*
  • ras Proteins / metabolism

Substances

  • Cdkn2a protein, mouse
  • Cyclin-Dependent Kinase Inhibitor p16
  • MicroRNAs
  • RNA, Messenger
  • RNA, Ribosomal
  • Drosha protein, mouse
  • Ribonuclease III
  • ras Proteins