Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo

Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3232-7. doi: 10.1073/pnas.0508476103. Epub 2006 Feb 21.

Abstract

The Mdm2 and Mdm4 oncoproteins are key negative regulators of the p53 tumor suppressor. However, their physiological contributions to the regulation of p53 stability and activity remain highly controversial. Here, we combined a p53 knock-in allele, in which p53 is silenced by a transcriptional stop element flanked by loxP sites, with the mdm2- and mdm4-null alleles. This approach allows Cre-mediated conditional p53 expression in tissues in vivo and cells in vitro lacking Mdm2, Mdm4, or both. Using this strategy, we show that Mdm2 and Mdm4 are essential in a nonredundant manner for preventing p53 activity in the same cell type, irrespective of the proliferation/differentiation status of the cells. Although Mdm2 prevents accumulation of the p53 protein, Mdm4 contributes to the overall inhibition of p53 activity independent of Mdm2. We propose a model in which Mdm2 is critical for the regulation of p53 levels and Mdm4 is critical for the fine-tuning of p53 transcriptional activity, both proteins acting synergistically to keep p53 in check.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Proliferation
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Gene Expression Regulation, Developmental
  • Mice
  • Mice, Knockout
  • Neurons / cytology
  • Neurons / metabolism
  • Proto-Oncogene Proteins / deficiency
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-mdm2 / deficiency
  • Proto-Oncogene Proteins c-mdm2 / genetics
  • Proto-Oncogene Proteins c-mdm2 / metabolism*
  • Stem Cells / cytology
  • Stem Cells / metabolism
  • Tumor Suppressor Protein p53 / antagonists & inhibitors*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*
  • Ubiquitin-Protein Ligases / deficiency
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*

Substances

  • Mdm4 protein, mouse
  • Proto-Oncogene Proteins
  • Tumor Suppressor Protein p53
  • Mdm2 protein, mouse
  • Proto-Oncogene Proteins c-mdm2
  • Ubiquitin-Protein Ligases