U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes

Refine your search

Results: 1 to 20 of 389

1.

Congenital myopathy 2c, severe infantile, autosomal dominant

Congenital myopathy-2C (CMYP2C) is an autosomal dominant disorder of the skeletal muscle characterized by severe congenital weakness usually resulting in death from respiratory failure in the first year or so of life. Patients present at birth with hypotonia, lack of antigravity movements, poor head control, and difficulties feeding or breathing, often requiring tube-feeding and mechanical ventilation. Decreased fetal movements may be observed in some cases. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype. Some patients with heterozygous mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation (CMYP2A; 161800). The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

2.

Congenital myopathy 2b, severe infantile, autosomal recessive

Autosomal recessive congenital myopathy-2B (CMYP2B) is a disorder of the skeletal muscle characterized by severe hypotonia with lack of spontaneous movements and respiratory insufficiency, usually leading to death in infancy or early childhood (Agrawal et al., 2004). However, longer survival has also been reported, likely due to the type of mutation and extent of its impact (O'Grady et al., 2015). Mutations in the ACTA1 gene can cause a range of skeletal muscle diseases. About 90% of patients with ACTA1 mutations carry heterozygous mutations, usually de novo (CMYP2A; 161800), whereas 10% of patients carry biallelic ACTA1 mutations (CMYP2B) (Nowak et al., 2007). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

3.

L1 syndrome

L1 syndrome involves a phenotypic spectrum ranging from severe to mild and includes three clinical phenotypes: X-linked hydrocephalus with stenosis of the aqueduct of Sylvius (HSAS). MASA (mental retardation [intellectual disability], aphasia [delayed speech], spastic paraplegia [shuffling gait], adducted thumbs) syndrome including X-linked complicated hereditary spastic paraplegia type 1. X-linked complicated corpus callosum agenesis. Males with HSAS are born with severe hydrocephalus, adducted thumbs, and spasticity; intellectual disability is severe. In less severely affected males, hydrocephalus may be subclinically present and documented only because of developmental delay; intellectual disability ranges from mild (IQ: 50-70) to moderate (IQ: 30-50). It is important to note that all phenotypes can be observed in affected individuals within the same family. [from GeneReviews]

4.

Nonsyndromic genetic hearing loss

Depending on the type, nonsyndromic hearing loss can become apparent at any time from infancy to old age. Hearing loss that is present before a child learns to speak is classified as prelingual or congenital. Hearing loss that occurs after the development of speech is classified as postlingual.\n\nMost forms of nonsyndromic hearing loss are described as sensorineural, which means they are associated with a permanent loss of hearing caused by damage to structures in the inner ear. The inner ear processes sound and sends the information to the brain in the form of electrical nerve impulses. Less commonly, nonsyndromic hearing loss is described as conductive, meaning it results from changes in the middle ear. The middle ear contains three tiny bones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic hearing loss, particularly a type called DFNX2, involve changes in both the inner ear and the middle ear. This combination is called mixed hearing loss.\n\nThe characteristics of nonsyndromic hearing loss vary among the different types. Hearing loss can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The term "deafness" is often used to describe severe-to-profound hearing loss. Hearing loss can be stable, or it may be progressive, becoming more severe as a person gets older. Particular types of nonsyndromic hearing loss show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or low tones.\n\nNonsyndromic hearing loss can be classified in several different ways. One common way is by the condition's pattern of inheritance: autosomal dominant (DFNA), autosomal recessive (DFNB), X-linked (DFNX), or mitochondrial (which does not have a special designation). Each of these types of hearing loss includes multiple subtypes. DFNA, DFNB, and DFNX subtypes are numbered in the order in which they were first described. For example, DFNA1 was the first type of autosomal dominant nonsyndromic hearing loss to be identified.\n\nNonsyndromic hearing loss is a partial or total loss of hearing that is not associated with other signs and symptoms. In contrast, syndromic hearing loss occurs with signs and symptoms affecting other parts of the body. [from MedlinePlus Genetics]

5.

Muscular dystrophy, limb-girdle, autosomal dominant

Autosomal dominant form of limb-girdle muscular dystrophy. [from MONDO]

6.

Megalencephalic leukoencephalopathy with subcortical cysts 1

The classic phenotype of megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by early-onset macrocephaly, often in combination with mild gross motor developmental delay and seizures; gradual onset of ataxia, spasticity, and sometimes extrapyramidal findings; and usually late onset of mild mental deterioration. Macrocephaly, observed in virtually all individuals, may be present at birth but more frequently develops during the first year of life. The degree of macrocephaly is variable and can be as great as 4 to 6 SD above the mean in some individuals. After the first year of life, head growth rate normalizes and growth follows a line parallel to and usually several centimeters above the 98th centile. Initial mental and motor development is normal in most individuals. Walking is often unstable, followed by ataxia of the trunk and extremities, then minor signs of pyramidal dysfunction and brisk deep-tendon stretch reflexes. Almost all individuals have epilepsy from an early age. The epilepsy is typically well controlled with anti-seizure medication, but status epilepticus occurs relatively frequently. Mental deterioration is late and mild. Disease severity ranges from independent walking for a few years only to independent walking in the fifth decade. Some individuals have died in their teens or twenties; others are alive in their fifties. An improving phenotype has a similar initial presentation with delayed mental or motor development, followed by an improving clinical course: macrocephaly usually persists, but some children become normocephalic; motor function improves or normalizes; hypotonia and clumsiness may persist in some or neurologic examination may become normal. Some have intellectual disability that is stable, with or without autism. Epilepsy and status epilepticus may occur. [from GeneReviews]

7.

Autosomal dominant proximal spinal muscular atrophy

A group of rare, genetic, motor neuron disease characterized by childhood or adult onset progressive, predominantly proximal, muscular weakness and wasting. Included diseases are Autosomal dominant adult-onset proximal spinal muscular atrophy, Lower motor neuron syndrome with late-adult onset, and Autosomal dominant childhood-onset proximal spinal muscular atrophy. [from ORDO]

9.

LAMA2-related muscular dystrophy

The clinical manifestations of LAMA2 muscular dystrophy (LAMA2-MD) comprise a continuous spectrum ranging from severe congenital muscular dystrophy type 1A (MDC1A) to milder late-onset LAMA2-MD. MDC1A is typically characterized by neonatal profound hypotonia, poor spontaneous movements, and respiratory failure. Failure to thrive, gastroesophageal reflux, aspiration, and recurrent chest infections necessitating frequent hospitalizations are common. As disease progresses, facial muscle weakness, temporomandibular joint contractures, and macroglossia may further impair feeding and can affect speech. In late-onset LAMA2-MD onset of manifestations range from early childhood to adulthood. Affected individuals may show muscle hypertrophy and develop a rigid spine syndrome with joint contractures, usually most prominent in the elbows. Progressive respiratory insufficiency, scoliosis, and cardiomyopathy can occur. [from GeneReviews]

10.

Hereditary ATTR amyloidosis

A rare genetic systemic disease characterized by adult onset, progressive sensorimotor and autonomic neuropathy and infiltrative cardiomyopathy. Neurological involvement usually starts with sensory loss in the extremities and progresses with motor neuropathy. Cardiomyopathy presents with rhythm abnormalities and heart failure. The disease also frequently manifests with a range of additional clinical signs and symptoms due to associated ocular, renal, central nervous system and gastrointestinal involvement. [from ORPHANET]

11.

Pyruvate dehydrogenase E3 deficiency

The phenotypes of dihydrolipoamide dehydrogenase (DLD) deficiency are an overlapping continuum that ranges from early-onset neurologic manifestations to adult-onset liver involvement and, rarely, a myopathic presentation. Early-onset DLD deficiency typically manifests in infancy as hypotonia with lactic acidosis. Affected infants frequently do not survive their initial metabolic decompensation, or die within the first few years of life during a recurrent metabolic decompensation. Children who live beyond the first two to three years frequently exhibit growth deficiencies and residual neurologic deficits (intellectual disability, spasticity, ataxia, and seizures). In contrast, isolated liver involvement can present as early as the neonatal period and as late as the third decade. Evidence of liver injury/failure is preceded by nausea and emesis and frequently associated with encephalopathy and/or coagulopathy. Acute metabolic episodes are frequently associated with lactate elevations, hyperammonemia, and hepatomegaly. With resolution of the acute episodes affected individuals frequently return to baseline with no residual neurologic deficit or intellectual disability. Liver failure can result in death, even in those with late-onset disease. Individuals with the myopathic presentation may experience muscle cramps, weakness, and an elevated creatine kinase. [from GeneReviews]

12.

Catecholaminergic polymorphic ventricular tachycardia

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by episodic syncope occurring during exercise or acute emotion. The underlying cause of these episodes is the onset of fast ventricular tachycardia (bidirectional or polymorphic). Spontaneous recovery may occur when these arrhythmias self-terminate. In other instances, ventricular tachycardia may degenerate into ventricular fibrillation and cause sudden death if cardiopulmonary resuscitation is not readily available. The mean onset of symptoms (usually a syncopal episode) is between age seven and 12 years; onset as late as the fourth decade of life has been reported. If untreated, CPVT is highly lethal, as approximately 30% of affected individuals experience at least one cardiac arrest and up to 80% have one or more syncopal spells. Sudden death may be the first manifestation of the disease. [from GeneReviews]

13.

Familial ovarian cancer

An instance of ovarian cancer that is caused by an inherited modification of the individual's genome. [from MONDO]

14.

Acid sphingomyelinase deficiency

The phenotype of acid sphingomyelinase deficiency (ASMD) occurs along a continuum. Individuals with the severe early-onset form, infantile neurovisceral ASMD, were historically diagnosed with Niemann-Pick disease type A (NPD-A). The later-onset, chronic visceral form of ASMD is also referred to as Niemann-Pick disease type B (NPD-B). A phenotype with intermediate severity is also known as chronic neurovisceral ASMD (NPD-A/B). The most common presenting symptom in NPD-A is hepatosplenomegaly, usually detectable by age three months; over time the liver and spleen become massive in size. Psychomotor development progresses no further than the 12-month level, after which neurologic deterioration is relentless. Failure to thrive typically becomes evident by the second year of life. A classic cherry-red spot of the macula of the retina, which may not be present in the first few months, is eventually present in all affected children. Interstitial lung disease caused by storage of sphingomyelin in pulmonary macrophages results in frequent respiratory infections and often respiratory failure. Most children succumb before the third year of life. NPD-B generally presents later than NPD-A, and the manifestations are less severe. NPD-B is characterized by progressive hepatosplenomegaly, gradual deterioration in liver and pulmonary function, osteopenia, and atherogenic lipid profile. No central nervous system (CNS) manifestations occur. Individuals with NPD-A/B have symptoms that are intermediate between NPD-A and NPD-B. The presentation in individuals with NPD-A/B varies greatly, although all are characterized by the presence of some CNS manifestations. Survival to adulthood can occur in individuals with NPD-B and NPD-A/B. [from GeneReviews]

15.

Central hypoventilation syndrome, congenital, 1, with or without Hirschsprung disease

Congenital central hypoventilation syndrome (CCHS) represents the extreme manifestation of autonomic nervous system dysregulation (ANSD) with the hallmark of disordered respiratory control. The age of initial recognition of CCHS ranges from neonatal onset (i.e., in the first 30 days of life) to (less commonly) later onset (from 1 month to adulthood). Neonatal-onset CCHS is characterized by apparent hypoventilation with monotonous respiratory rates and shallow breathing either during sleep only or while awake as well as asleep; ANSD including decreased heart rate beat-to-beat variability and sinus pauses; altered temperature regulation; and altered pupillary response to light. Some children have altered development of neural crest-derived structures (i.e., Hirschsprung disease, altered esophageal motility/dysphagia, and severe constipation even in the absence of Hirschsprung disease) and/or tumors of neural crest origin (neuroblastoma, ganglioneuroma, and ganglioneuroblastoma). Neurocognitive delay is variable, and possibly influenced by cyanotic breath holding, prolonged sinus pauses, need for 24-hour/day artificial ventilation, and seizures. Later-onset CCHS is characterized by alveolar hypoventilation during sleep and attenuated manifestations of ANSD. [from GeneReviews]

16.

Congenital disorder of glycosylation, type IIw

Congenital disorder of glycosylation type IIw (CDG2W) is an autosomal dominant metabolic disorder characterized by liver dysfunction, coagulation deficiencies, and profound abnormalities in N-glycosylation of serum specific proteins. All reported patients carry the same mutation (602671.0017) (summary by Ng et al., 2021). For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066). [from OMIM]

17.

Neuronopathy, distal hereditary motor, autosomal dominant

Autosomal dominant form of distal hereditary motor neuropathy. [from MONDO]

19.

Hypertriglyceridemia 2

Hypertriglyceridemia-2 (HYTG2) is characterized by moderately to severely elevated plasma triglyceride levels, increased total cholesterol levels, and low levels of high density lipoprotein (HDL) cholesterol. Reduced penetrance has been observed (Lee et al., 2011; Cefalu et al., 2015). [from OMIM]

20.

Mismatch repair cancer syndrome 2

Mismatch repair cancer syndrome-2 (MMRCS2) is an autosomal recessive childhood cancer predisposition syndrome characterized by hematologic malignancy, brain tumors, and gastrointestinal tumors. Multiple cafe-au-lait spots reminiscent of neurofibromatosis type I (NF1; 162200) may be present. Microsatellite instability may be detected in tumor samples (Muller et al., 2006). For a discussion of genetic heterogeneity of mismatch repair cancer syndrome (MMRCS), see MMRCS1 (276300). [from OMIM]

Results: 1 to 20 of 389

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.