NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1034613195|ref|XP_016859328|]
View 

SH2 domain-containing protein 6 isoform X1 [Homo sapiens]

Protein Classification

SH2_BLNK_SLP-76 domain-containing protein( domain architecture ID 10177793)

SH2_BLNK_SLP-76 domain-containing protein

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
223-344 3.30e-66

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198183  Cd Length: 121  Bit Score: 204.47  E-value: 3.30e-66
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 223 SAAEDSDLLTQPWYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSQPFTLAVLLRGRVFNIPIRRLDGGRHYALGREG 302
Cdd:cd09929     1 SAEEEADLLPKEWYAGNIDRKEAEEALRRSNKDGTFLVRDSSGKDSSQPYTLMVLYNDKVYNIQIRFLENTRQYALGTGL 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1034613195 303 RnREELFSSVAAMVQHFMWHPLPLVDRHSGSRELTCLLFPTK 344
Cdd:cd09929    81 R-GEETFSSVAEIIEHHQKTPLLLIDGKDNTKDSTCLLYAAG 121
SP1-4_N super family cl41773
N-terminal domain of transcription factor Specificity Proteins (SP) 1-4; Specificity Proteins ...
101-221 7.19e-03

N-terminal domain of transcription factor Specificity Proteins (SP) 1-4; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. There are many SPs in vertebrates (9 SPs in humans and mice, 7 SPs in chicken, and 11 SPs in teleost fish), but arthropods only have 3 SPs. SPs belong to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. SP factors may be separated into three groups based on their domain architecture and the similarity of their N-terminal transactivation domains: SP1-4, SP5, and SP6-9. The transactivation domains between the three groups are not homologous to one another. SP1-4 have similar N-terminal transactivation domains characterized by glutamine-rich regions, which, in most cases, have adjacent serine/threonine-rich regions. This model represents the N-terminal domain of SP1-4.


The actual alignment was detected with superfamily member cd22540:

Pssm-ID: 425404 [Multi-domain]  Cd Length: 511  Bit Score: 37.98  E-value: 7.19e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 101 PSKPSPPLPQPTML------KGAVSLPvagkQGPIFGRREQGASSRVVPGPPKKPDEDLYLECEPDPVLALTQTLSFQ-V 173
Cdd:cd22540   278 PGTGQPAVLQQVQVlqpkqeQQVVQIP----QQALRVVQAASATLPTVPQKPLQNIQIQNSEPTPTQVYIKTPSGEVQtV 353
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1034613195 174 LMPSGPlprTSVVPRPTTAPQETRNGTADAASKEGRKSS-------LPSVAPTGS 221
Cdd:cd22540   354 LLQEAP---AATATPSSSTSTVQQQVTANNGTGTSKPNYnvrkertLPKIAPAGG 405
 
Name Accession Description Interval E-value
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
223-344 3.30e-66

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 204.47  E-value: 3.30e-66
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 223 SAAEDSDLLTQPWYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSQPFTLAVLLRGRVFNIPIRRLDGGRHYALGREG 302
Cdd:cd09929     1 SAEEEADLLPKEWYAGNIDRKEAEEALRRSNKDGTFLVRDSSGKDSSQPYTLMVLYNDKVYNIQIRFLENTRQYALGTGL 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1034613195 303 RnREELFSSVAAMVQHFMWHPLPLVDRHSGSRELTCLLFPTK 344
Cdd:cd09929    81 R-GEETFSSVAEIIEHHQKTPLLLIDGKDNTKDSTCLLYAAG 121
SH2 pfam00017
SH2 domain;
235-319 1.76e-12

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 62.23  E-value: 1.76e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 235 WYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYALGREGrnreelFSSVAA 314
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGKPDGTFLVRESESTPGG--YTLSVRDDGKVKHYKIQSTDNGGYYISGGVK------FSSLAE 72

                  ....*
gi 1034613195 315 MVQHF 319
Cdd:pfam00017  73 LVEHY 77
SP2_N cd22540
N-terminal domain of transcription factor Specificity Protein (SP) 2; Specificity Proteins ...
101-221 7.19e-03

N-terminal domain of transcription factor Specificity Protein (SP) 2; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. SP2 contains the least conserved DNA-binding domain within the SP subfamily of proteins, and its DNA sequence specificity differs from the other SP proteins. It localizes primarily within subnuclear foci associated with the nuclear matrix, and can activate, or in some cases, repress expression from different promoters. The transcription factor SP2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. SP2 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. SP factors may be separated into three groups based on their domain architecture and the similarity of their N-terminal transactivation domains: SP1-4, SP5, and SP6-9. The transactivation domains between the three groups are not homologous to one another. SP1-4 have similar N-terminal transactivation domains characterized by glutamine-rich regions, which, in most cases, have adjacent serine/threonine-rich regions. This model represents the N-terminal domain of SP2.


Pssm-ID: 411776 [Multi-domain]  Cd Length: 511  Bit Score: 37.98  E-value: 7.19e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 101 PSKPSPPLPQPTML------KGAVSLPvagkQGPIFGRREQGASSRVVPGPPKKPDEDLYLECEPDPVLALTQTLSFQ-V 173
Cdd:cd22540   278 PGTGQPAVLQQVQVlqpkqeQQVVQIP----QQALRVVQAASATLPTVPQKPLQNIQIQNSEPTPTQVYIKTPSGEVQtV 353
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1034613195 174 LMPSGPlprTSVVPRPTTAPQETRNGTADAASKEGRKSS-------LPSVAPTGS 221
Cdd:cd22540   354 LLQEAP---AATATPSSSTSTVQQQVTANNGTGTSKPNYnvrkertLPKIAPAGG 405
 
Name Accession Description Interval E-value
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
223-344 3.30e-66

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 204.47  E-value: 3.30e-66
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 223 SAAEDSDLLTQPWYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSQPFTLAVLLRGRVFNIPIRRLDGGRHYALGREG 302
Cdd:cd09929     1 SAEEEADLLPKEWYAGNIDRKEAEEALRRSNKDGTFLVRDSSGKDSSQPYTLMVLYNDKVYNIQIRFLENTRQYALGTGL 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1034613195 303 RnREELFSSVAAMVQHFMWHPLPLVDRHSGSRELTCLLFPTK 344
Cdd:cd09929    81 R-GEETFSSVAEIIEHHQKTPLLLIDGKDNTKDSTCLLYAAG 121
SH2 pfam00017
SH2 domain;
235-319 1.76e-12

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 62.23  E-value: 1.76e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 235 WYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYALGREGrnreelFSSVAA 314
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGKPDGTFLVRESESTPGG--YTLSVRDDGKVKHYKIQSTDNGGYYISGGVK------FSSLAE 72

                  ....*
gi 1034613195 315 MVQHF 319
Cdd:pfam00017  73 LVEHY 77
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
234-319 2.14e-11

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 59.01  E-value: 2.14e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 234 PWYSGNCDRYAVEsALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLR-GRVFNIPIRRLDGGRHYALGREGRnreelFSSV 312
Cdd:cd00173     1 PWFHGSISREEAE-RLLRGKPDGTFLVRESSSEPGD--YVLSVRSGdGKVKHYLIERNEGGYYLLGGSGRT-----FPSL 72

                  ....*..
gi 1034613195 313 AAMVQHF 319
Cdd:cd00173    73 PELVEHY 79
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
231-324 7.25e-08

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 49.96  E-value: 7.25e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 231 LTQPWYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRldGGRHYALGregrnrEELFS 310
Cdd:cd09932     2 ESKEWFHANLTREQAEEMLMRVPRDGAFLVRPSETDPNS--FAISFRAEGKIKHCRIKQ--EGRLFVIG------TSQFE 71
                          90
                  ....*....|....
gi 1034613195 311 SVAAMVQHFMWHPL 324
Cdd:cd09932    72 SLVELVSYYEKHPL 85
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
233-342 1.84e-06

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 45.88  E-value: 1.84e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 233 QPWYSGNCDRYAVESaLLHLQKDGAYTVRPSSGphGSQPFTLAVLLRGRVFNIPIRRLDGGRhYALGREGRnreeLFSSV 312
Cdd:cd09945     1 QGWYHGAITRIEAES-LLRPCKEGSYLVRNSES--TKQDYSLSLKSAKGFMHMRIQRNETGQ-YILGQFSR----PFETI 72
                          90       100       110
                  ....*....|....*....|....*....|
gi 1034613195 313 AAMVQHFMWHPLPLvdrhSGSRELtCLLFP 342
Cdd:cd09945    73 PEMIRHYCLNKLPV----RGAEHM-CLLEP 97
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
235-324 4.62e-06

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 44.39  E-value: 4.62e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 235 WYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVllrgrvfnipiRRLDGGRHYALGREGRNRE---ELFSS 311
Cdd:cd10355     8 WYHGNLTRHAAEALLLSNGVDGSYLLRNSNEGTGL--FSLSV-----------RAKDSVKHFHVEYTGYSFKfgfNEFSS 74
                          90
                  ....*....|...
gi 1034613195 312 VAAMVQHFMWHPL 324
Cdd:cd10355    75 LQDFVKHFANQPL 87
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
229-326 5.79e-06

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 44.06  E-value: 5.79e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 229 DLLTQPWYSGNCDRYAVEsALLHlqKDGAYTVRPSSGPHGSQP-FTLAVLLRGRVFNIPIRRLDGGRHYalgregrNREE 307
Cdd:cd10361     2 DLENEPYYHGLLPREDAE-ELLK--NDGDFLVRKTEPKGGGKRkLVLSVRWDGKIRHFVINRDDGGKYY-------IEGK 71
                          90
                  ....*....|....*....
gi 1034613195 308 LFSSVAAMVQHFMWHPLPL 326
Cdd:cd10361    72 SFKSISELINYYQKTKEPI 90
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
235-320 8.62e-06

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 43.56  E-value: 8.62e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 235 WYSGNCDRY-AVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYAlgREGrnreELFSSVA 313
Cdd:cd10348     2 WLHGALDRNeAVEILKQKADADGSFLVRYSRRRPGG--YVLTLVYENHVYHFEIQNRDDKWFYI--DDG----PYFESLE 73

                  ....*..
gi 1034613195 314 AMVQHFM 320
Cdd:cd10348    74 HLIEHYT 80
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
232-319 1.08e-05

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 43.65  E-value: 1.08e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 232 TQPWYSGNCDRYAVESALLHLQKD-GAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYALgregrnREELFS 310
Cdd:cd10370     2 AEPWYFGKIKRIEAEKKLLLPENEhGAFLIRDSESRHND--YSLSVRDGDTVKHYRIRQLDEGGFFIA------RRTTFR 73

                  ....*....
gi 1034613195 311 SVAAMVQHF 319
Cdd:cd10370    74 TLQELVEHY 82
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
229-344 1.98e-05

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 43.07  E-value: 1.98e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 229 DLLTQPWYSGNCDRYAVESALLHlQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYALGREgrnreel 308
Cdd:cd10407     1 DYSCQPWYAGAMERLQAETELIN-RVNSTYLVRHRTKESGE--YAISIKYNNEVKHIKILTRDGFFHIAENRK------- 70
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1034613195 309 FSSVAAMVQHFMWHPLplvdrHSGSREL-TCLLFPTK 344
Cdd:cd10407    71 FKSLMELVEYYKHHSL-----KEGFRSLdTTLQFPYK 102
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
233-319 3.75e-05

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 42.17  E-value: 3.75e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 233 QPWYSGNCDRYAVESALLHLQ-KDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPIRRLDGGRHYAlgregrNREELFSS 311
Cdd:cd10369     3 EPWFFGAIKRADAEKQLLYSEnQTGAFLIRESESQKGE--FSLSVLDGGVVKHYRIRRLDEGGFFL------TRRKTFST 74

                  ....*...
gi 1034613195 312 VAAMVQHF 319
Cdd:cd10369    75 LNEFVNYY 82
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
228-329 2.48e-04

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 39.93  E-value: 2.48e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 228 SDLLTQPWYSGNCDRYAVESALLHLQKDGAYTVRPSSgPHGSqpFTLAVLLRGR------VFNIPIRRLDGGRHYALGRe 301
Cdd:cd10398     1 TNLEIYEWYHKNITRNQAERLLRQESKEGAFIVRDSR-HLGS--YTISVFTRARrsteasIKHYQIKKNDSGQWYVAER- 76
                          90       100
                  ....*....|....*....|....*...
gi 1034613195 302 grnreELFSSVAAMVQHFMWHPLPLVDR 329
Cdd:cd10398    77 -----HLFQSIPELIQYHQHNAAGLMSR 99
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
229-324 4.67e-04

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 39.20  E-value: 4.67e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 229 DLLTQPWYSGNCDRYAVESaLLHLQKDGAYTVRPSsgPHGSQPFTLAVLLRGRVFNIPIRRLDGGRHYAlgREGRnreeL 308
Cdd:cd09940     1 DLSEFLWFVGEMERDTAEN-RLENRPDGTYLVRVR--PQGETQYALSIKYNGDVKHMKIEQRSDGLYYL--SESR----H 71
                          90
                  ....*....|....*.
gi 1034613195 309 FSSVAAMVQHFMWHPL 324
Cdd:cd09940    72 FKSLVELVNYYERNSL 87
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
235-334 6.68e-04

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 38.41  E-value: 6.68e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 235 WYSGNCDRYAVESALLHLQKDGAYTVRPSSgphgSQP--FTLAVLLR-GRVFNIPIrRLDGGRHYALGREGrnreelFSS 311
Cdd:cd09931     2 WFHGHLSGKEAEKLLLEKGKPGSFLVRESQ----SKPgdFVLSVRTDdDKVTHIMI-RCQGGKYDVGGGEE------FDS 70
                          90       100
                  ....*....|....*....|...
gi 1034613195 312 VAAMVQHFMWHplPLVDrHSGSR 334
Cdd:cd09931    71 LTDLVEHYKKN--PMVE-TSGTV 90
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
233-324 1.76e-03

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 37.11  E-value: 1.76e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 233 QPWYSGNCDRYAVESALLHLQKDGAYTVRPSSgphgSQPFTLAVLLRGRVFNIPIRRLDGGRHYALGregrNREelFSSV 312
Cdd:cd09943     1 QPWYYGRITRHQAETLLNEHGHEGDFLIRDSE----SNPGDYSVSLKAPGRNKHFKVQVVDNVYCIG----QRK--FHTM 70
                          90
                  ....*....|..
gi 1034613195 313 AAMVQHFMWHPL 324
Cdd:cd09943    71 DELVEHYKKAPI 82
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
228-326 4.09e-03

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 36.93  E-value: 4.09e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 228 SDLLTQPWYSGNCDRYAVESALlhlQKDGAYTVRPSsgphGSQP--FTLAVLLRGRVFNIPIRRLdggrhyALG-REGRN 304
Cdd:cd10337     1 EDLRSHAWYHGRIPRQVAESLV---QREGDFLVRDS----LSSPgdYVLTCRWKGQPLHFKINRV------VLRpSEAYT 67
                          90       100
                  ....*....|....*....|....*...
gi 1034613195 305 R------EELFSSVAAMVQHFMWHPLPL 326
Cdd:cd10337    68 RvqyqfeDEQFDSIPALVHFYVGNRRPI 95
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
233-287 4.90e-03

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 36.27  E-value: 4.90e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1034613195 233 QPWYSGNCDRYAVESALLHLQKDGAYTVRPSSGPHGSqpFTLAVLLRGRVFNIPI 287
Cdd:cd10343     3 PPWYHGNITRSKAEELLSKAGKDGSFLVRDSESVSGA--YALCVLYQNCVHTYRI 55
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
235-266 7.01e-03

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 35.84  E-value: 7.01e-03
                          10        20        30
                  ....*....|....*....|....*....|..
gi 1034613195 235 WYSGNCDRYAVESALLHLQKDGAYTVRPSSGP 266
Cdd:cd09934     8 WYVGDMSRQRAESLLKQEDKEGCFVVRNSSTK 39
SP2_N cd22540
N-terminal domain of transcription factor Specificity Protein (SP) 2; Specificity Proteins ...
101-221 7.19e-03

N-terminal domain of transcription factor Specificity Protein (SP) 2; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. SP2 contains the least conserved DNA-binding domain within the SP subfamily of proteins, and its DNA sequence specificity differs from the other SP proteins. It localizes primarily within subnuclear foci associated with the nuclear matrix, and can activate, or in some cases, repress expression from different promoters. The transcription factor SP2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. SP2 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. SP factors may be separated into three groups based on their domain architecture and the similarity of their N-terminal transactivation domains: SP1-4, SP5, and SP6-9. The transactivation domains between the three groups are not homologous to one another. SP1-4 have similar N-terminal transactivation domains characterized by glutamine-rich regions, which, in most cases, have adjacent serine/threonine-rich regions. This model represents the N-terminal domain of SP2.


Pssm-ID: 411776 [Multi-domain]  Cd Length: 511  Bit Score: 37.98  E-value: 7.19e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034613195 101 PSKPSPPLPQPTML------KGAVSLPvagkQGPIFGRREQGASSRVVPGPPKKPDEDLYLECEPDPVLALTQTLSFQ-V 173
Cdd:cd22540   278 PGTGQPAVLQQVQVlqpkqeQQVVQIP----QQALRVVQAASATLPTVPQKPLQNIQIQNSEPTPTQVYIKTPSGEVQtV 353
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1034613195 174 LMPSGPlprTSVVPRPTTAPQETRNGTADAASKEGRKSS-------LPSVAPTGS 221
Cdd:cd22540   354 LLQEAP---AATATPSSSTSTVQQQVTANNGTGTSKPNYnvrkertLPKIAPAGG 405
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH