NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|530381841|ref|XP_005249090|]
View 

E3 ubiquitin-protein ligase MYLIP isoform X4 [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
FERM_C_MYLIP_IDOL cd13195
FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein ...
4-114 2.24e-62

FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP; also called inducible degrader of the LDL receptor, IDOL); MYLIP/IDOL is a regulator of the LDL receptor (LDLR) pathway via the nuclear receptor liver X receptor (LXR). In response to cellular cholesterol loading, the activation of LXR leads to the induction of MYLIP expression. MYLIP stimulates ubiquitination of the LDLR on its cytoplasmic tail, directing its degradation. The LXR-MYLIP-LDLR pathway provides a complementary pathway to sterol regulatory element-binding proteins for the feedback inhibition of cholesterol uptake. MYLIP has an N-terminal FERM domain and in some cases a C-terminal RING domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


:

Pssm-ID: 270016  Cd Length: 111  Bit Score: 191.31  E-value: 2.24e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   4 YGIEWHSVRDSEGQKLLIGVGPEGISICKDDFSPINRIAYPVVQMATQSGKNVYLTVTKESGNSIVLLFKMISTRAASGL 83
Cdd:cd13195    1 YGVEFFEVRNIEGQKLLIGVGPHGITICNDDFEVIERIPYTAIQMATSSGRVFTLTYLSDDGSVKVLEFKLPSTRAASGL 80
                         90       100       110
                 ....*....|....*....|....*....|.
gi 530381841  84 YRAITETHAFYRCDTVTSAVMMQYSRDLKGH 114
Cdd:cd13195   81 YRAITEKHAFYRCETVRSAVTDQFSRDLKGT 111
RING-HC_MYLIP cd16523
RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) ...
202-253 3.05e-29

RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) and similar proteins; MYLIP, also known as inducible degrader of the low-density lipoprotein (LDL)-receptor (IDOL), or MIR, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR, and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains an ERM-homology domain and a C-terminal C3HC4-type RING-HC finger.


:

Pssm-ID: 438186 [Multi-domain]  Cd Length: 52  Bit Score: 104.96  E-value: 3.05e-29
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVYLP 253
Cdd:cd16523    1 EAMLCMVCCEEEINSAFCPCGHMVCCESCAAQLQSCPVCRSRVEHVQHVYLP 52
 
Name Accession Description Interval E-value
FERM_C_MYLIP_IDOL cd13195
FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein ...
4-114 2.24e-62

FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP; also called inducible degrader of the LDL receptor, IDOL); MYLIP/IDOL is a regulator of the LDL receptor (LDLR) pathway via the nuclear receptor liver X receptor (LXR). In response to cellular cholesterol loading, the activation of LXR leads to the induction of MYLIP expression. MYLIP stimulates ubiquitination of the LDLR on its cytoplasmic tail, directing its degradation. The LXR-MYLIP-LDLR pathway provides a complementary pathway to sterol regulatory element-binding proteins for the feedback inhibition of cholesterol uptake. MYLIP has an N-terminal FERM domain and in some cases a C-terminal RING domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270016  Cd Length: 111  Bit Score: 191.31  E-value: 2.24e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   4 YGIEWHSVRDSEGQKLLIGVGPEGISICKDDFSPINRIAYPVVQMATQSGKNVYLTVTKESGNSIVLLFKMISTRAASGL 83
Cdd:cd13195    1 YGVEFFEVRNIEGQKLLIGVGPHGITICNDDFEVIERIPYTAIQMATSSGRVFTLTYLSDDGSVKVLEFKLPSTRAASGL 80
                         90       100       110
                 ....*....|....*....|....*....|.
gi 530381841  84 YRAITETHAFYRCDTVTSAVMMQYSRDLKGH 114
Cdd:cd13195   81 YRAITEKHAFYRCETVRSAVTDQFSRDLKGT 111
RING-HC_MYLIP cd16523
RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) ...
202-253 3.05e-29

RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) and similar proteins; MYLIP, also known as inducible degrader of the low-density lipoprotein (LDL)-receptor (IDOL), or MIR, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR, and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains an ERM-homology domain and a C-terminal C3HC4-type RING-HC finger.


Pssm-ID: 438186 [Multi-domain]  Cd Length: 52  Bit Score: 104.96  E-value: 3.05e-29
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVYLP 253
Cdd:cd16523    1 EAMLCMVCCEEEINSAFCPCGHMVCCESCAAQLQSCPVCRSRVEHVQHVYLP 52
zf-C3HC4_3 pfam13920
Zinc finger, C3HC4 type (RING finger);
202-247 1.94e-11

Zinc finger, C3HC4 type (RING finger);


Pssm-ID: 464042 [Multi-domain]  Cd Length: 50  Bit Score: 57.77  E-value: 1.94e-11
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 530381841  202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQL----QSCPVCRSRVEHV 247
Cdd:pfam13920   1 EDLLCVICLDRPRNVVLLPCGHLCLCEECAERLlrkkKKCPICRQPIESV 50
FERM_C pfam09380
FERM C-terminal PH-like domain;
13-96 1.43e-05

FERM C-terminal PH-like domain;


Pssm-ID: 462779 [Multi-domain]  Cd Length: 85  Bit Score: 42.63  E-value: 1.43e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   13 DSEGQKLLIGVGPEGISICKDDFSPINRIAYPVVQMATQSGKNVYLTVTKESGnSIVLLFKMISTRAASGLYRAITETHA 92
Cdd:pfam09380   1 DKEGTDLWLGVSAKGILVYEDNNKILNLFPWREIRKISFKRKKFLIKLRDKSS-EETLGFYTESSRACKYLWKLCVEQHT 79

                  ....
gi 530381841   93 FYRC 96
Cdd:pfam09380  80 FFRL 83
COG5236 COG5236
Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only];
201-247 3.60e-03

Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only];


Pssm-ID: 227561 [Multi-domain]  Cd Length: 493  Bit Score: 38.46  E-value: 3.60e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 530381841 201 KEAMLCMVCCEEEINSTFCPCGHTVcCESCAAQL------QSCPVCRSRVEHV 247
Cdd:COG5236   59 EENMNCQICAGSTTYSARYPCGHQI-CHACAVRLralymqKGCPLCRTETEAV 110
 
Name Accession Description Interval E-value
FERM_C_MYLIP_IDOL cd13195
FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein ...
4-114 2.24e-62

FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP; also called inducible degrader of the LDL receptor, IDOL); MYLIP/IDOL is a regulator of the LDL receptor (LDLR) pathway via the nuclear receptor liver X receptor (LXR). In response to cellular cholesterol loading, the activation of LXR leads to the induction of MYLIP expression. MYLIP stimulates ubiquitination of the LDLR on its cytoplasmic tail, directing its degradation. The LXR-MYLIP-LDLR pathway provides a complementary pathway to sterol regulatory element-binding proteins for the feedback inhibition of cholesterol uptake. MYLIP has an N-terminal FERM domain and in some cases a C-terminal RING domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270016  Cd Length: 111  Bit Score: 191.31  E-value: 2.24e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   4 YGIEWHSVRDSEGQKLLIGVGPEGISICKDDFSPINRIAYPVVQMATQSGKNVYLTVTKESGNSIVLLFKMISTRAASGL 83
Cdd:cd13195    1 YGVEFFEVRNIEGQKLLIGVGPHGITICNDDFEVIERIPYTAIQMATSSGRVFTLTYLSDDGSVKVLEFKLPSTRAASGL 80
                         90       100       110
                 ....*....|....*....|....*....|.
gi 530381841  84 YRAITETHAFYRCDTVTSAVMMQYSRDLKGH 114
Cdd:cd13195   81 YRAITEKHAFYRCETVRSAVTDQFSRDLKGT 111
RING-HC_MYLIP cd16523
RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) ...
202-253 3.05e-29

RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) and similar proteins; MYLIP, also known as inducible degrader of the low-density lipoprotein (LDL)-receptor (IDOL), or MIR, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR, and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains an ERM-homology domain and a C-terminal C3HC4-type RING-HC finger.


Pssm-ID: 438186 [Multi-domain]  Cd Length: 52  Bit Score: 104.96  E-value: 3.05e-29
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVYLP 253
Cdd:cd16523    1 EAMLCMVCCEEEINSAFCPCGHMVCCESCAAQLQSCPVCRSRVEHVQHVYLP 52
FERM_C_4_1_family cd13184
FERM domain C-lobe of Protein 4.1 family; The protein 4.1 family includes four well-defined ...
4-95 9.09e-14

FERM domain C-lobe of Protein 4.1 family; The protein 4.1 family includes four well-defined members: erythroid protein 4.1 (4.1R), the best known and characterized member, 4.1G (general), 4.1N (neuronal), and 4.1 B (brain). The less well understood 4.1O/FRMD3 is not a true member of this family and is not included in this hierarchy. Besides three highly conserved domains, FERM, SAB (spectrin and actin binding domain) and CTD (C-terminal domain), the proteins from this family contain several unique domains: U1, U2 and U3. FERM domains like other members of the FERM domain superfamily have a cloverleaf architecture with three distinct lobes: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The brain is a particularly rich source of protein 4.1 isoforms. The various 4.1R, 4.1G, 4.1N, and 4.1B mRNAs are all expressed in distinct patterns within the brain. It is likely that 4.1 proteins play important functional roles in the brain including motor coordination and spatial learning, postmitotic differentiation, and synaptic architecture and function. In addition they are found in nonerythroid, nonneuronal cells where they may play a general structural role in nuclear architecture and/or may interact with splicing factors. The FERM C domain is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270005  Cd Length: 94  Bit Score: 65.42  E-value: 9.09e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   4 YGIEWHSVRDSEGQKLLIGVGPEGISICKDDFSpINRIAYPVVQMATQSGKNVYLTVTK-ESGNS-IVLLFKMISTRAAS 81
Cdd:cd13184    1 YGVDLHPAKDSEGVDIMLGVCSSGLLVYRDRLR-INRFAWPKVLKISYKRNNFYIKIRPgEFEQYeTTIGFKLPNHRAAK 79
                         90
                 ....*....|....
gi 530381841  82 GLYRAITETHAFYR 95
Cdd:cd13184   80 RLWKVCVEHHTFFR 93
FERM_C-lobe cd00836
FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N ...
5-95 4.23e-13

FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 275389  Cd Length: 93  Bit Score: 63.55  E-value: 4.23e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   5 GIEWHSVRDSE--GQKLLIGVGPEGISICKD-DFSPINRIAYPVVQMATQSG-KNVYLTVTKEsGNSIVLLFKMiSTRAA 80
Cdd:cd00836    1 GVEFFPVKDKSkkGSPIILGVNPEGISVYDElTGQPLVLFPWPNIKKISFSGaKKFTIVVADE-DKQSKLLFQT-PSRQA 78
                         90
                 ....*....|....*
gi 530381841  81 SGLYRAITETHAFYR 95
Cdd:cd00836   79 KEIWKLIVGYHRFLL 93
RING-HC_BIRC4_8 cd16714
RING finger, HC subclass, found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP ...
194-252 2.37e-12

RING finger, HC subclass, found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP repeat-containing protein 8 (BIRC8) and similar proteins; XIAP, also known as baculoviral IAP repeat-containing protein 4 (BIRC4), IAP-like protein (ILP), inhibitor of apoptosis protein 3 (IAP-3), or X-linked inhibitor of apoptosis protein (X-linked IAP), is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases, including caspase-3, -7, and -9. It promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. The ubiquitin-protein ligase (E3) activity of XIAP also exhibits in the ubiquitination of second mitochondria-derived activator of caspases (Smac). The mitochondrial proteins, Smac/DIABLO and Omi/HtrA2, can inhibit the antiapoptotic activity of XIAP. XIAP has also been implicated in several intracellular signaling cascades involved in the cellular response to stress, such as the c-Jun N-terminal kinase (JNK), the nuclear factor-kappaB (NF-kappaB), and the transforming growth factor-beta (TGF-beta) pathways. Moreover, XIAP can regulate copper homeostasis by interacting with MURR1. BIRC8, also known as inhibitor of apoptosis-like protein 2, IAP-like protein 2, ILP-2, or testis-specific inhibitor of apoptosis, is a tissue-specific homolog of E3 ubiquitin-protein ligase XIAP. It has been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. Both XIAP and BIRC8 contain three N-terminal baculoviral IAP repeat (BIR) domains, a ubiquitin-association (UBA) domain and a C3HC4-type RING-HC finger at the carboxyl terminus.


Pssm-ID: 438374 [Multi-domain]  Cd Length: 64  Bit Score: 60.54  E-value: 2.37e-12
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 530381841 194 QEKLRKLKEAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVYL 252
Cdd:cd16714    5 EEKLRRLQEEKLCKICMDRNISIVFIPCGHLVTCKQCAEALDKCPICCTVITFKQKIFM 63
zf-C3HC4_3 pfam13920
Zinc finger, C3HC4 type (RING finger);
202-247 1.94e-11

Zinc finger, C3HC4 type (RING finger);


Pssm-ID: 464042 [Multi-domain]  Cd Length: 50  Bit Score: 57.77  E-value: 1.94e-11
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 530381841  202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQL----QSCPVCRSRVEHV 247
Cdd:pfam13920   1 EDLLCVICLDRPRNVVLLPCGHLCLCEECAERLlrkkKKCPICRQPIESV 50
RING-HC_IAPs cd16510
RING finger, HC subclass, found in inhibitor of apoptosis proteins (IAPs); IAPs are frequently ...
203-242 2.94e-11

RING finger, HC subclass, found in inhibitor of apoptosis proteins (IAPs); IAPs are frequently overexpressed in cancer and associated with tumor cell survival, chemoresistance, disease progression, and poor prognosis. They function primarily as negative regulators of cell death. They regulate caspases and apoptosis through the inhibition of specific members of the caspase family of cysteine proteases. In addition, IAPs has been implicated in a multitude of other cellular processes, including inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis, as well as cell invasion and metastasis. IAPs in this family includes cellular inhibitor of apoptosis protein c-IAP1 (BIRC2) and c-IAP2 (BIRC3), XIAP (BIRC4), BIRC7, and BIRC8, all of which contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of polyubiquitin (polyUb), and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. The UBA domain is only absent in mammalian homologs of BIRC7. Moreover, c-IAPs contains an additional caspase activation and recruitment domain (CARD) between the UBA and C3HC4-type RING-HC domains. The CARD domain may serve as a protein interaction surface.


Pssm-ID: 438173 [Multi-domain]  Cd Length: 40  Bit Score: 56.88  E-value: 2.94e-11
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 530381841 203 AMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRS 242
Cdd:cd16510    1 EKLCKICMDREVNIVFLPCGHLVTCAQCAASLRKCPICRT 40
RING-HC_BIRC2_3_7 cd16713
RING finger, HC subclass, found in apoptosis protein c-IAP1, c-IAP2, livin, and similar ...
197-244 5.15e-11

RING finger, HC subclass, found in apoptosis protein c-IAP1, c-IAP2, livin, and similar proteins; The cellular inhibitor of apoptosis protein c-IAPs function as ubiquitin E3 ligases that mediate the ubiquitination of substrates involved in apoptosis, nuclear factor-kappaB (NF-kappaB) signaling, and oncogenesis. Unlike other IAPs, such as XIAP, c-IAPs exhibit minimal binding to caspases and may not play an important role in the inhibition of these proteases. c-IAP1, also known as baculoviral IAP repeat-containing protein BIRC2, IAP-2, RING finger protein 48, or TNFR2-TRAF-signaling complex protein 2, is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-kappaB signaling pathways in the cytoplasm. It can also regulate E2F1 transcription factor-mediated control of cyclin transcription in the nucleus. c-IAP2, also known as BIRC3, IAP-1, apoptosis inhibitor 2 (API2), or IAP homolog C, also influences ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-kappaB. c-IAPs contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of polyubiquitin (polyUb), a caspase activation and recruitment domain (CARD) that serves as a protein interaction surface, and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. Livin, also known as baculoviral IAP repeat-containing protein 7 (BIRC7), kidney inhibitor of apoptosis protein (KIAP), melanoma inhibitor of apoptosis protein (ML-IAP), or RING finger protein 50, was identified as the melanoma IAP. It plays crucial roles in apoptosis, cell proliferation, and cell cycle control. Its anti-apoptotic activity is regulated by the inhibition of caspase-3, -7, and -9. Its E3 ubiquitin-ligase-like activity promotes degradation of Smac/DIABLO, a critical endogenous regulator of all IAPs. Unlike other family members, mammalian livin contains a single BIR domain and a C3HC4-type RING-HC finger. The UBA domain can be detected in non-mammalian homologs of livin.


Pssm-ID: 438373 [Multi-domain]  Cd Length: 57  Bit Score: 56.71  E-value: 5.15e-11
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 530381841 197 LRKLKEAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRV 244
Cdd:cd16713    1 LRRLQEERTCKVCMDKEVSIVFIPCGHLVVCTECAPSLRKCPICRATI 48
RING-HC_CARP cd16500
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein CARP-1, ...
205-251 2.20e-10

RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein CARP-1, CARP-2 and similar proteins; The CARP subfamily includes CARP-1 and CARP-2 proteins, both of which are E3 ubiquitin ligases that ubiquitinate apical caspases and target them for proteasome-mediated degradation. As a novel group of caspase regulators with a FYVE-type zinc finger domain, they do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8, and caspase 10. Moreover, they stabilize MDM2 by inhibiting MDM2 self-ubiquitination, as well as by targeting 14-3-3sigma for degradation. They work together with MDM2 to enhance p53 degradation, thereby inhibiting p53-mediated cell death. CARPs contain an N-terminal FYVE-like domain that can serve as a membrane-targeting or endosome localizing signal and a C-terminal C3HC4-type RING-HC finger domain.


Pssm-ID: 438163 [Multi-domain]  Cd Length: 48  Bit Score: 54.70  E-value: 2.20e-10
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVY 251
Cdd:cd16500    2 LCKICMDAAIDCVLLECGHMVTCTDCGKKLSECPICRQYVVRVVHFF 48
RING-HC_CblA-like cd16501
RING finger, HC subclass, found in Dictyostelium discoideum Cbl-like protein A (CblA) and ...
202-251 3.12e-09

RING finger, HC subclass, found in Dictyostelium discoideum Cbl-like protein A (CblA) and similar proteins; CblA is a Dictyostelium homolog of the Cbl proteins which are multi-domain proteins acting as key negative regulators of various receptor and non-receptor tyrosine kinase signaling. CblA upregulates STATc tyrosine phosphorylation by downregulating PTP3, the protein tyrosine phosphatase responsible for dephosphorylating STATc. STATc is a signal transducer and activator of transcription protein. Like other Cbl proteins, CblA contains a tyrosine-kinase-binding domain (TKB), a proline-rich domain, a C3HC4-type RING-HC finger, and an ubiquitin-associated (UBA) domain. TKB, also known as a phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain. This family also includes Drosophila melanogaster defense repressor 1 (Dnr1) that was identified as an inhibitor of Dredd activity in the absence of a microbial insult in Drosophila S2 cells. It inhibits the Drosophila initiator caspases Dredd and Dronc. Moreover, Dnr1 acts as a negative regulator of the Imd (immune deficiency) innate immune-response pathway. Its mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Dnr1 contains a FERM N-terminal domain followed by a region rich in glutamine and serine residues, a central FERM domain, and a C-terminal C3HC4-type RING-HC finger.


Pssm-ID: 438164 [Multi-domain]  Cd Length: 53  Bit Score: 51.72  E-value: 3.12e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVY 251
Cdd:cd16501    4 DADLCVVCMDAPIDTVFLECGHLACCRLCSKRLRVCPICRQPISRVVRIF 53
mRING-HC-C3HC5_NEU1 cd16647
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein NEURL1A, ...
206-251 1.42e-08

Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein NEURL1A, NEURL1B, and similar proteins; This subfamily includes Drosophila neuralized (D-neu) protein, and its two mammalian homologs, NEURL1A and NEURL1B. D-neu is a regulator of the developmentally important Notch signaling pathway. NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of D-neu. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in medulloblastoma. NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is another mammalian homolog of D-neu protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling by working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. Members of this subfamily contain two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438309 [Multi-domain]  Cd Length: 53  Bit Score: 49.99  E-value: 1.42e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQ----SCPVCRSRVEHVQHVY 251
Cdd:cd16647    4 CVICYERPVDTVLYRCGHMCMCYDCALQLKrrggSCPICRAPIKDVIKIY 53
FERM_C_PTPN4_PTPN3_like cd13189
FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 3 and 4 (PTPN4 and ...
4-95 3.96e-08

FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 3 and 4 (PTPN4 and PTPN3); PTPN4 (also called PTPMEG, protein tyrosine phosphatase, megakaryocyte) is a cytoplasmic protein-tyrosine phosphatase (PTP) thought to play a role in cerebellar function. PTPMEG-knockout mice have impaired memory formation and cerebellar long-term depression. PTPN3/PTPH1 is a membrane-associated PTP that is implicated in regulating tyrosine phosphorylation of growth factor receptors, p97 VCP (valosin-containing protein, or Cdc48 in Saccharomyces cerevisiae), and HBV (Hepatitis B Virus) gene expression; it is mutated in a subset of colon cancers. PTPMEG and PTPN3/PTPH1 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. PTP1/Tyrosine-protein phosphatase 1 from nematodes and a FERM_C repeat 1 from Tetraodon nigroviridis are also included in this cd. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270010  Cd Length: 95  Bit Score: 50.00  E-value: 3.96e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   4 YGIEWHSVRDSEGQKLLIGVGPEGISICKDDFspinRIA-YPVVQMATQS--GKNVYLTVTKESGNSI--VLLFKMISTR 78
Cdd:cd13189    2 YGVELHSARDSNNLELQIGVSSAGILVFQNGI----RINtFPWSKIVKISfkRKQFFIQLRREPNESRdtILGFNMLSYR 77
                         90
                 ....*....|....*..
gi 530381841  79 AASGLYRAITETHAFYR 95
Cdd:cd13189   78 ACKNLWKSCVEHHTFFR 94
RING-HC_LRSAM1 cd16515
RING finger, HC subclass, found in leucine-rich repeat and sterile alpha motif-containing ...
206-247 1.15e-07

RING finger, HC subclass, found in leucine-rich repeat and sterile alpha motif-containing protein 1 (LRSAM1) and similar proteins; LRSAM1, also known as Tsg101-associated ligase (TAL), or RIFLE, is an E3 ubiquitin-protein ligase that physically associates with, and selectively ubiquitylates, Tsg101, an E2-like molecule that regulates vesicular trafficking processes in yeast and mammals. It regulates a Tsg101-associated complex responsible for the sorting of cargo into cytoplasm-containing vesicles that bud at the multivesicular body and at the plasma membrane. LRSAM1 is a multidomain protein containing an N-terminal leucine-rich repeat (LRR), followed by several recognizable motifs, including an ezrin-radixin-moezin (ERM) domain, a coiled-coil (CC) region, a SAM domain, and a C-terminal C3HC4-type RING-HC finger domain.


Pssm-ID: 438178 [Multi-domain]  Cd Length: 48  Bit Score: 47.29  E-value: 1.15e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|..
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHV 247
Cdd:cd16515    4 CVVCMDAESQVIFLPCGHVCCCQTCSSSLSTCPLCRADITQR 45
RING-HC_XBAT35-like cd23129
RING finger, HC subclass, found in Arabidopsis thaliana protein XB3 homolog 5 (XBAT35) and ...
206-251 1.30e-07

RING finger, HC subclass, found in Arabidopsis thaliana protein XB3 homolog 5 (XBAT35) and similar proteins; XBAT35, also known as ankyrin repeat domain and RING finger-containing protein XBAT35, or RING-type E3 ubiquitin transferase XBAT35, has no E3 ubiquitin-protein ligase activity observed when associated with the E2 enzyme UBC8 in vitro. It contains a typical C3HC4-type RING-HC finger.


Pssm-ID: 438491 [Multi-domain]  Cd Length: 54  Bit Score: 47.26  E-value: 1.30e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQ----SCPVCRSRVEHVQHVY 251
Cdd:cd23129    5 CVVCMDAPRDAVCVPCGHVAGCMSCLKALMqsspLCPICRAPVRQVIKVY 54
FERM_C_FRMD3_FRMD5 cd13192
FERM domain C-lobe of FERM domain-containing protein 3 and 5 (FRMD3 and 5); FRMD3 (also called ...
1-95 1.52e-07

FERM domain C-lobe of FERM domain-containing protein 3 and 5 (FRMD3 and 5); FRMD3 (also called Band 4.1-like protein 4O/4.1O though it is not a true member of that family) is a novel putative tumor suppressor gene that is implicated in the origin and progression of lung cancer. In humans there are 5 isoforms that are produced by alternative splicing. Less is known about FRMD5, though there are 2 isoforms of the human protein are produced by alternative splicing. Both FRMD3 and FRMD5 contain a N-terminal FERM domain, followed by a FERM adjacent (FA) domain, and 4.1 protein C-terminal domain (CTD). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270013  Cd Length: 105  Bit Score: 48.54  E-value: 1.52e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   1 MENYGIEWHSVRDSEGQKLLIGVGPEGISICKDDfSPINRIAYPVVQMATQSGKNVYLTVTKESGNSIVLLFKMISTRAA 80
Cdd:cd13192   12 LETYGVDPHPVKDHRGNQLYLGFTHTGIVTFQGG-KRVHHFRWNDITKFNYEGKMFILHVMQKEEKKHTLGFKCPTPAAC 90
                         90
                 ....*....|....*
gi 530381841  81 SGLYRAITETHAFYR 95
Cdd:cd13192   91 KHLWKCAVEQQAFYT 105
RING-HC_RSPRY1 cd16566
RING finger, HC subclass, found in RING finger and SPRY domain-containing protein 1 (RSPRY1) ...
206-242 3.08e-07

RING finger, HC subclass, found in RING finger and SPRY domain-containing protein 1 (RSPRY1) and similar proteins; RSPRY1 is a hypothetical RING and SPRY domain-containing protein of unknown physiological function. Mutations in its corresponding gene RSPRY1 may associate with a distinct skeletal dysplasia syndrome. RSPRY1 contains a B30.2/SPRY domain and a C3HC4-type RING-HC finger.


Pssm-ID: 438228 [Multi-domain]  Cd Length: 43  Bit Score: 45.81  E-value: 3.08e-07
                         10        20        30
                 ....*....|....*....|....*....|....*..
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRS 242
Cdd:cd16566    5 CTLCFDKVADTELRPCGHSGFCMECALQLETCPLCRQ 41
RING-HC_MEX3 cd16518
RING finger, HC subclass, found in RNA-binding proteins of the evolutionarily-conserved MEX-3 ...
206-251 2.39e-06

RING finger, HC subclass, found in RNA-binding proteins of the evolutionarily-conserved MEX-3 family; MEX-3 phosphoproteins are found in vertebrates. They are mediators of post-transcriptional regulation in different organisms, and have been implicated in many core biological processes, including embryonic development, epithelial homeostasis, immune responses, metabolism, and cancer. They contain two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. They shuttle between the nucleus and the cytoplasm via the CRM1-dependent export pathway. The RNA-binding protein MEX-3 from nematode Caenorhabditis elegans is the founding member of the MEX-3 family. Due to the lack of a RING-HC finger, it is not included here.


Pssm-ID: 438181 [Multi-domain]  Cd Length: 53  Bit Score: 43.90  E-value: 2.39e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQL-----QSCPVCRSRVEHVQHVY 251
Cdd:cd16518    3 CVVCFESEVVAALVPCGHNLFCMECANRIceksdPECPVCHTPVTQAIRIF 53
RING-HC_MEX3C cd16722
RING finger, HC subclass, found in RNA-binding protein MEX3C; MEX3C, also known as RING finger ...
206-251 2.42e-06

RING finger, HC subclass, found in RNA-binding protein MEX3C; MEX3C, also known as RING finger and KH domain-containing protein 2 (RKHD2), or RING finger protein 194 (RNF194), is an RNA-binding phosphoprotein that acts as a suppressor of chromosomal instability. It functions as an ubiquitin E3 ligase responsible for the post-transcriptional, HLA-A allotype-specific regulation of MHC class I molecules (MHC-I). It also modifies retinoic acid inducible gene-1 (RIG-I) in stress granules and plays a critical role in eliciting antiviral immune responses. Moreover, MEX3C plays an essential role in normal postnatal growth via enhancing the local expression of insulin-like growth factor 1 (IGF1) in bone. It may also be involved in metabolic regulation of energy balance. MEX3C contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3C shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway.


Pssm-ID: 438382 [Multi-domain]  Cd Length: 55  Bit Score: 43.82  E-value: 2.42e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQ-----LQSCPVCRSRVEHVQHVY 251
Cdd:cd16722    4 CVICFENEVIAALVPCGHNLFCMECANKicekeTPSCPVCQTAVTQAIQIH 54
RING-HC_MEX3D cd16723
RING finger, HC subclass, found in RNA-binding protein MEX3D; MEX3D, also known as RING finger ...
206-251 6.11e-06

RING finger, HC subclass, found in RNA-binding protein MEX3D; MEX3D, also known as RING finger and KH domain-containing protein 1 (RKHD1), RING finger protein 193 (RNF193), or TINO, is an RNA-binding phosphoprotein that controls the stability of the transcripts coding for the anti-apoptotic protein BCL-2, and negatively regulates BCL-2 in HeLa cells. MEX3D contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3D shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway.


Pssm-ID: 438383 [Multi-domain]  Cd Length: 64  Bit Score: 42.98  E-value: 6.11e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQL-----QSCPVCRSRVEHVQHVY 251
Cdd:cd16723   13 CVVCFESEVIAALVPCGHNLFCMECAIRIcgksePECPACHTPATQAIHIF 63
RING-HC_SPL2-like cd23145
RING finger, HC subclass, found in Arabidopsis thaliana SP1-like protein 2 (SPL2) and similar ...
202-241 6.69e-06

RING finger, HC subclass, found in Arabidopsis thaliana SP1-like protein 2 (SPL2) and similar proteins; SPL2, also known as RING-type E3 ubiquitin transferase SPL2, acts as an E3 ubiquitin-protein ligase that mediates E2-dependent protein ubiquitination. SPL2 contains a typical C3HC4-type RING-HC finger.


Pssm-ID: 438507 [Multi-domain]  Cd Length: 47  Bit Score: 42.19  E-value: 6.69e-06
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQS-----CPVCR 241
Cdd:cd23145    2 DGELCVVCLLRRRRVAFIECGHRVCCELCARRVTReanprCPVCR 46
RING-HC_MIP1-like cd23128
RING finger, HC subclass, found in Arabidopsis thaliana MND1-interacting protein 1 (MIP1) and ...
206-245 6.86e-06

RING finger, HC subclass, found in Arabidopsis thaliana MND1-interacting protein 1 (MIP1) and similar proteins; This subfamily includes Arabidopsis thaliana MIP1, RING finger protein 4 (RF4) and RING finger protein 298 (RF298). MIP1 interacts with MND1, HOP2 and XRI1. RF4 and RF298 are putative E3 ubiquitin-protein ligase that may mediate E2-dependent protein ubiquitination. Members of this subfamily contain a typical C3HC4-type RING-HC finger.


Pssm-ID: 438490 [Multi-domain]  Cd Length: 55  Bit Score: 42.50  E-value: 6.86e-06
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQS-----CPVCRSRVE 245
Cdd:cd23128    6 CVMCMEEERSVVFLPCAHQVVCSGCNDLHEKkgmreCPSCRGEIQ 50
RING-HC_CARP2 cd16707
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 2 (CARP-2) ...
202-251 8.47e-06

RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 2 (CARP-2) and similar proteins; CARP-2, also known as rififylin, caspase regulator CARP2, FYVE-RING finger protein Sakura (Fring), RING finger and FYVE-like domain-containing protein 1, RING finger protein 189 (RNF189), or RING finger protein 34-like, is an endosome-associated E3 ubiquitin-protein ligase that targets internalized receptor interacting kinase (RIP) for proteasome-mediated degradation. It acts as a negative regulator of tumor necrosis factor (TNF)-induced nuclear factor (NF)-kappaB activation. It also regulates the p53 signaling pathway by degrading 14-3-3sigma and stabilizing MDM2. As a caspase regulator, CARP2 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP2 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain.


Pssm-ID: 438367 [Multi-domain]  Cd Length: 50  Bit Score: 42.27  E-value: 8.47e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 530381841 202 EAMLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVY 251
Cdd:cd16707    1 DENLCKICMDSPIDCVLLECGHMVTCTKCGKRMSECPICRQYVIRAVHVF 50
FERM_C pfam09380
FERM C-terminal PH-like domain;
13-96 1.43e-05

FERM C-terminal PH-like domain;


Pssm-ID: 462779 [Multi-domain]  Cd Length: 85  Bit Score: 42.63  E-value: 1.43e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 530381841   13 DSEGQKLLIGVGPEGISICKDDFSPINRIAYPVVQMATQSGKNVYLTVTKESGnSIVLLFKMISTRAASGLYRAITETHA 92
Cdd:pfam09380   1 DKEGTDLWLGVSAKGILVYEDNNKILNLFPWREIRKISFKRKKFLIKLRDKSS-EETLGFYTESSRACKYLWKLCVEQHT 79

                  ....
gi 530381841   93 FYRC 96
Cdd:pfam09380  80 FFRL 83
RING-HC_CARP1 cd16706
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 1 (CARP1) ...
205-251 1.44e-05

RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 1 (CARP1) and similar proteins; CARP1, also known as caspase regulator CARP1, FYVE-RING finger protein Momo, RING finger homologous to inhibitor of apoptosis protein (RFI), RING finger protein 34 (RNF34), or RING finger protein RIFF, is a nuclear protein that functions as a specific E3 ubiquitin ligase for the transcriptional coactivator PGC-1alpha, a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell which negatively regulates brown fat cell metabolism. It is preferentially expressed in esophageal, gastric, and colorectal cancers, suggesting a possible association with the development of digestive tract cancers. It regulates the p53 signaling pathway by degrading 14-3-3 sigma and stabilizing MDM2. CARP1 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP1 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain.


Pssm-ID: 438366 [Multi-domain]  Cd Length: 54  Bit Score: 41.55  E-value: 1.44e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRVEHVQHVY 251
Cdd:cd16706    6 LCRICMDAVIDCVLLECGHMVTCTKCGKRMSECPICRQYVVRAVHVF 52
mRING-HC-C3HC5_CGRF1 cd16787
Modified RING finger, HC subclass (C3HC5-type), found in cell growth regulator with RING ...
205-241 2.16e-05

Modified RING finger, HC subclass (C3HC5-type), found in cell growth regulator with RING finger domain protein 1 (CGRRF1) and similar proteins; CGRRF1, also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker to monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. CGRRF1 contains a C-terminal modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438441 [Multi-domain]  Cd Length: 38  Bit Score: 40.81  E-value: 2.16e-05
                         10        20        30
                 ....*....|....*....|....*....|....*..
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCR 241
Cdd:cd16787    2 DCVVCQNAPVNRVLLPCRHACVCDECFKRLQRCPMCR 38
RING-HC_MIB1_rpt1 cd16724
first RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also ...
206-241 2.17e-05

first RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of three C3HC4-type RING-HC fingers. This model corresponds to the first RING-HC finger.


Pssm-ID: 438384  Cd Length: 38  Bit Score: 40.55  E-value: 2.17e-05
                         10        20        30
                 ....*....|....*....|....*....|....*.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCR 241
Cdd:cd16724    3 CMVCSDMKRDTLFGPCGHIATCSLCSPRVKKCLICK 38
RING-HC_NEURL3 cd16552
RING finger, HC subclass, found in neuralized-like protein 3 (NEURL3) and similar proteins; ...
206-247 3.16e-05

RING finger, HC subclass, found in neuralized-like protein 3 (NEURL3) and similar proteins; NEURL3, also known as lung-inducible neuralized-related C3HC4 RING domain protein (LINCR), is a novel inflammation-induced E3 ubiquitin-protein ligase encoded by LINCR, a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. It is expressed in alveolar epithelial type II cells, preferentially interacts with the ubiquitin-conjugating enzyme UbcH6, and generates polyubiquitin chains linked via non-canonical lysine residues. Overexpression of NEURL3 in the developing lung epithelium inhibits distal differentiation and induces cystic changes in the Notch signaling pathway. NEURL3 contains an N-terminal neuralized homology repeat (NHR) domain similar to the SPRY (SPla and the RYanodine receptor) domain and a C-terminal C3HC4-type RING-HC finger.


Pssm-ID: 438214 [Multi-domain]  Cd Length: 50  Bit Score: 40.68  E-value: 3.16e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQS----CPVCRSRVEHV 247
Cdd:cd16552    4 CAICFHHTANTRLVPCGHSHFCGSCAWHIFRdtarCPVCRWQIEEV 49
RING-HC_RGLG_plant cd16729
RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from ...
202-242 4.11e-05

RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from plant; RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. Members of this subfamily contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger.


Pssm-ID: 438389  Cd Length: 48  Bit Score: 40.16  E-value: 4.11e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 530381841 202 EAMLCMVCCEEEINSTFcPCGHTVCCEsCAAQLQSCPVCRS 242
Cdd:cd16729    1 DDQLCPICLSNPKDMAF-GCGHQTCCE-CGQSLTHCPICRQ 39
RING-HC cd16449
HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type ...
204-240 5.33e-05

HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized into two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have a different Cys/His pattern. Some lack a single Cys or His residue at typical Zn ligand positions, especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can chelate Zn in a RING finger as well. This family corresponds to the HC subclass of RING (RING-HC) fingers that are characterized by containing C3HC4-type canonical RING-HC fingers or noncanonical RING-HC finger variants, including C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type modified RING-HC fingers. The canonical RING-HC finger has been defined as C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C. It binds two Zn ions in a unique "cross-brace" arrangement, which distinguishes it from tandem zinc fingers and other similar motifs. RING-HC fingers can be found in a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle, and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serve as scaffolds for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates.


Pssm-ID: 438113 [Multi-domain]  Cd Length: 41  Bit Score: 39.78  E-value: 5.33e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|..
gi 530381841 204 MLCMVCCEEEINSTFCPCGHtVCCESCAAQL-----QSCPVC 240
Cdd:cd16449    1 LECPICLERLKDPVLLPCGH-VFCRECIRRLlesgsIKCPIC 41
Prok-RING_4 pfam14447
Prokaryotic RING finger family 4; RING finger family domain found sporadically in bacteria. ...
206-244 6.05e-05

Prokaryotic RING finger family 4; RING finger family domain found sporadically in bacteria. The finger is fused to an N-terminal alpha-helical domain, ROT/Trove-like repeats and a C-terminal TerD domain. The architecture suggests a possible role in an RNA-processing complex.


Pssm-ID: 433959 [Multi-domain]  Cd Length: 46  Bit Score: 39.72  E-value: 6.05e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 530381841  206 CMVCCEEEINSTFCPCGHTVCcESC--AAQLQSCPVCRSRV 244
Cdd:pfam14447   1 CVLCGRNGTVHALIPCGHLVC-RDCfdGSDFSACPICRRRI 40
mRING-HC-C3HC5_MAPL cd16648
Modified RING finger, HC subclass (C3HC5-type), found in mitochondrial-anchored protein ligase ...
206-251 8.44e-05

Modified RING finger, HC subclass (C3HC5-type), found in mitochondrial-anchored protein ligase (MAPL) and similar proteins; MAPL, also known as MULAN, mitochondrial ubiquitin ligase activator of NFKB 1, E3 SUMO-protein ligase MUL1, E3 ubiquitin-protein ligase MUL1, growth inhibition and death E3 ligase (GIDE), putative NF-kappa-B-activating protein 266, or RING finger protein 218 (RNF218), is a multifunctional mitochondrial outer membrane protein involved in several processes specific to metazoan (multicellular animal) cells, such as NF-kappaB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. MAPL contains a unique BAM (beside a membrane)/GIDE (growth inhibition death E3 ligase) domain and a C-terminal modified cytosolic C3HC5-type RING-HC finger which is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438310 [Multi-domain]  Cd Length: 52  Bit Score: 39.37  E-value: 8.44e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQS---CPVCRSRVEHVQHVY 251
Cdd:cd16648    4 CVICLSNPRSCVFLECGHVCSCIECYEALPSpkkCPICRSFIKRVVPLY 52
RING-HC_MEX3B cd16721
RING finger, HC subclass, found in RNA-binding protein MEX3B; MEX3B, also known as RING finger ...
206-251 1.08e-04

RING finger, HC subclass, found in RNA-binding protein MEX3B; MEX3B, also known as RING finger and KH domain-containing protein 3 (RKHD3), or RING finger protein 195 (RNF195), is an RNA-binding phosphoprotein that localizes in P-bodies and stress granules, which are two structures involved in the storage and turnover of mRNAs. It regulates the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions. It has a 3' long conserved untranslated region (3'LCU)-mediated fine-tuning system for mRNA regulation in early vertebrate development such as anteroposterior (AP) patterning and signal transduction. MEX3B contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3B shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway.


Pssm-ID: 438381 [Multi-domain]  Cd Length: 58  Bit Score: 39.28  E-value: 1.08e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQL-----QSCPVCRSRVEHVQHVY 251
Cdd:cd16721    7 CSICFESEVIAALVPCGHNLFCMECANRIceknePQCPVCHAAVTQAIRIF 57
RING-HC_MIB2_rpt1 cd16726
first RING finger, HC subclass, found in mind bomb 2 (MIB2) and similar proteins; MIB2, also ...
206-240 1.13e-04

first RING finger, HC subclass, found in mind bomb 2 (MIB2) and similar proteins; MIB2, also known as novel zinc finger protein (Novelzin), putative NF-kappa-B-activating protein 002N, skeletrophin, or zinc finger ZZ type with ankyrin repeat domain protein 1, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands. It promotes Delta ubiquitylation and endocytosis in Notch activation. Overexpression of MIB2 activates NF-kappaB and interferon-stimulated response element (ISRE) reporter activity. Moreover, MIB2 acts as a novel component of the activated B-cell CLL/lymphoma 10 (BCL10) complex and controls BCL10-dependent NF-kappaB activation. It also functions as a founder myoblast-specific protein that regulates myoblast fusion and muscle stability. MIB2 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of two C3HC4-type RING-HC fingers. This model corresponds to the first RING-HC finger.


Pssm-ID: 438386  Cd Length: 38  Bit Score: 38.58  E-value: 1.13e-04
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVC 240
Cdd:cd16726    3 CLVCSELAALVRFEPCQHSIVCEECARRMKKCIKC 37
RING-HC_MEX3A cd16720
RING finger, HC subclass, found in RNA-binding protein MEX3A; MEX3A, also known as RING finger ...
206-251 1.27e-04

RING finger, HC subclass, found in RNA-binding protein MEX3A; MEX3A, also known as RING finger and KH domain-containing protein 4 (RKHD4), is an RNA-binding phosphoprotein that localizes in P-bodies and stress granules, which are two structures involved in the storage and turnover of mRNAs. It has been implicated in the regulation of tumorigenesis. It controls the polarity and stemness of intestinal epithelial cells through the post-transcriptional regulation of the homeobox transcription factor CDX2, which plays a crucial role in intestinal cell fate specification, both during normal development and in tumorigenic processes involving intestinal reprogramming. Moreover, it exhibits a transforming activity when overexpressed in gastric epithelial cells. MEX3A contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3A shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway.


Pssm-ID: 438380 [Multi-domain]  Cd Length: 56  Bit Score: 39.17  E-value: 1.27e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQL-----QSCPVCRSRVEHVQHVY 251
Cdd:cd16720    5 CMVCFESEVTAALVPCGHNLFCMECAVRIcernePECPVCHALATQAIRIF 55
mRING-HC-C3HC5_NEU1B cd16786
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1B (NEURL1B); ...
206-253 1.34e-04

Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1B (NEURL1B); NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling through working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. NEURL1B contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438440 [Multi-domain]  Cd Length: 57  Bit Score: 39.16  E-value: 1.34e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQS-----CPVCRSRVEHVQHVYLP 253
Cdd:cd16786    5 CTVCFDSEVDTVIYTCGHMCLCNSCGLKLKRqinacCPICRRVIKDVIKIYRP 57
RING-HC_MIB1_rpt2 cd16725
second RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also ...
206-241 1.50e-04

second RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of three C3HC4-type RING-HC fingers. This model corresponds to the second RING-HC finger.


Pssm-ID: 438385  Cd Length: 38  Bit Score: 38.24  E-value: 1.50e-04
                         10        20        30
                 ....*....|....*....|....*....|....*.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCR 241
Cdd:cd16725    3 CVVCSDKKASVLFKPCGHMCACEGCAALMKKCVQCR 38
RING-HC_MIBs-like cd16520
RING finger, HC subclass, found in mind bomb MIB1, MIB2, RGLG1, RGLG2, and similar proteins; ...
205-241 3.46e-04

RING finger, HC subclass, found in mind bomb MIB1, MIB2, RGLG1, RGLG2, and similar proteins; MIBs are large, multi-domain E3 ubiquitin-protein ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. They are also responsible for TBK1 K63-linked ubiquitination and activation, promoting interferon production and controlling antiviral immunity. Moreover, MIBs selectively control responses to cytosolic RNA and regulate type I interferon transcription. Both MIB1 and MIB2 have similar domain architectures, which consist of two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region, where MIB1 and MIB2 contain three and two C3HC4-type RING-HC fingers, respectively. This model corresponds to the third RING-HC finger of MIB1, as well as the second RING-HC finger of MIB2. In addition to MIB1 and MIB2, the RING-HC fingers of RING domain ligase RGLG1, RGLG2 and similar proteins from plant are also included in this model. RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. All RGLG proteins contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger.


Pssm-ID: 438183 [Multi-domain]  Cd Length: 39  Bit Score: 37.27  E-value: 3.46e-04
                         10        20        30
                 ....*....|....*....|....*....|....*..
gi 530381841 205 LCMVCCEEEINSTFCpCGHTVCCEsCAAQLQSCPVCR 241
Cdd:cd16520    2 LCPICMERKKNVVFL-CGHGTCQK-CAEKLKKCPICR 36
RING-HC_MIBs cd16519
RING finger, HC subclass, found in mind bomb MIB1, MIB2, and similar proteins; MIBs are large, ...
206-241 3.99e-04

RING finger, HC subclass, found in mind bomb MIB1, MIB2, and similar proteins; MIBs are large, multi-domain E3 ubiquitin-protein ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. They are also responsible for TBK1 K63-linked ubiquitination and activation, promoting interferon production and controlling antiviral immunity. Moreover, MIBs selectively control responses to cytosolic RNA and regulate type I interferon transcription. Both MIB1 and MIB2 have similar domain architectures, which consist of two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region, where MIB1 and MIB2 contain three and two C3HC4-type RING-HC fingers, respectively. This model corresponds to the first RING-HC finger of MIB1 and MIB2, as well as the second RING-HC finger of MIB1.


Pssm-ID: 438182  Cd Length: 38  Bit Score: 37.07  E-value: 3.99e-04
                         10        20        30
                 ....*....|....*....|....*....|....*.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCR 241
Cdd:cd16519    3 CRVCSDKKALVLFQPCGHVVACEECSLRMKKCLQCK 38
mRING-HC-C3HC5_CGRF1-like cd16649
Modified RING finger, HC subclass (C3HC5-type), found in RING finger proteins, RNF26, RNF197 ...
205-241 4.64e-04

Modified RING finger, HC subclass (C3HC5-type), found in RING finger proteins, RNF26, RNF197 (CGRRF1), RNF156 (MGRN1), RNF157 and similar proteins; This subfamily corresponds to a group of RING finger proteins containing a modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Cell growth regulator with RING finger domain protein 1 (CGRRF1), also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker to monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. RNF26 is an E3 ubiquitin ligase that temporally regulates virus-triggered type I interferon induction by increasing the stability of Mediator of IRF3 activation, MITA, also known as STING, through K11-linked polyubiquitination after viral infection and promoting degradation of IRF3, another important component required for virus-triggered interferon induction. Mahogunin ring finger-1 (MGRN1), also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in the brain. It is a homolog of the E3 ligase MGRN1. In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis.


Pssm-ID: 438311 [Multi-domain]  Cd Length: 40  Bit Score: 36.92  E-value: 4.64e-04
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQLQS--CPVCR 241
Cdd:cd16649    2 LCVVCLENPASVLLLPCRHLCLCEVCAKGLRGktCPICR 40
RING-HC_PEX10 cd16527
RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known ...
206-252 5.55e-04

RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known as peroxisome biogenesis factor 10, peroxisomal biogenesis factor 10, peroxisome assembly protein 10, or RING finger protein 69 (RNF69), is an integral peroxisomal membrane protein with two transmembrane regions and a C3HC4-type RING-HC finger within its cytoplasmically exposed C-terminus. It plays an essential role in peroxisome assembly, import of target substrates, and recycling or degradation of protein complexes and amino acids. It is an essential component of the spinal locomotor circuit, and thus its mutations may be involved in peroxisomal biogenesis disorders (PBD). Mutations in human PEX10 also result in autosomal recessive ataxia. Moreover, PEX10 functions as an E3-ubiquitin ligase with an E2, UBCH5C. It mono- or poly-ubiquitinates PEX5, a key player in peroxisomal matrix protein import, in a UBC4-dependent manner, to control PEX5 receptor recycling or degradation. It also links the E2 ubiquitin conjugating enzyme PEX4 to the protein import machinery of the peroxisome.


Pssm-ID: 438190 [Multi-domain]  Cd Length: 52  Bit Score: 37.21  E-value: 5.55e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCE---SCAAQLQSCPVCRSRVEHVQHVYL 252
Cdd:cd16527    3 CSLCLEERRHPTATPCGHLFCWScitEWCNEKPECPLCREPFQPQRLVPL 52
mRING-HC-C2H2C4_MDM2-like cd16646
Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2, ...
205-247 7.61e-04

Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2, protein MDM4 and similar proteins; MDM2 (also known as HDM2) and MDM4 (also known as MDMX or HDMX) are the primary p53 tumor suppressor negative regulators. They have non-redundant roles in the regulation of p53. MDM2 mainly functions to control p53 stability, while MDM4 controls p53 transcriptional activity. Both MDM2 and MDM4 contain an N-terminal p53-binding domain, a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region, and a C-terminal modified C2H2C4-type RING-HC finger. Mdm2 can form homo-oligomers through its RING domain and displays E3 ubiquitin ligase activity that catalyzes the attachment of ubiquitin to p53 as an essential step in the regulation of its levels in cells. Despite its RING domain and structural similarity with MDM2, MDM4 does not homo-oligomerize and lacks ubiquitin-ligase function, but inhibits the transcriptional activity of p53. In addition, both their RING domains are responsible for the hetero-oligomerization, which is crucial for the suppression of P53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. Moreover, MDM2 and MDM4 can be phosphorylated and destabilized in response to DNA damage stress. In response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through the interaction with ribosomal proteins L5, L11, and L23. However, MDM4 is not bound to ribosomal proteins, suggesting its different response to regulation by small basic proteins such as ribosomal proteins and ARF.


Pssm-ID: 438308 [Multi-domain]  Cd Length: 52  Bit Score: 36.54  E-value: 7.61e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 530381841 205 LCMVCCEEEINSTFC--PCGHTVCCESCAAQL----QSCPVCRSRVEHV 247
Cdd:cd16646    2 LCVICLSRPRTAAIVhgKTGHQVACYTCAKKLkrrgKPCPVCRRPIQNV 50
RING-HC_UNK-like cd16614
RING finger, HC subclass, found in RING finger protein unkempt (UNK), unkempt-like (UNKL), and ...
204-240 9.27e-04

RING finger, HC subclass, found in RING finger protein unkempt (UNK), unkempt-like (UNKL), and similar proteins; UNK, also known as zinc finger CCCH domain-containing protein 5, is a metazoan-specific zinc finger protein enriched in embryonic brains. It may play a broad regulatory role during the formation of the central nervous system (CNS). It is a sequence-specific RNA-binding protein required for early neuronal morphology. UNK is a neurogenic component of the mTOR pathway, and functions as a negative regulator of the timing of photoreceptor differentiation. It also specifically binds to Brg/Brm-associated factor BAF60b and promotes its ubiquitination in a Rac1-dependent manner. UNKL, also known as zinc finger CCCH domain-containing protein 5-like, is a putative E3 ubiquitin-protein ligase that may participate in a protein complex showing an E3 ligase activity regulated by RAC1. Both UNK and UNKL contain several tandem CCCH-type zinc fingers at the N-terminus, and a C3HC4-type RING-HC finger at its C-terminus.


Pssm-ID: 438276  Cd Length: 38  Bit Score: 36.00  E-value: 9.27e-04
                         10        20        30
                 ....*....|....*....|....*....|....*..
gi 530381841 204 MLCMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVC 240
Cdd:cd16614    1 KKCMKCEERNRSVAVLPCQHYVLCEQCAETATECPYC 37
RING-HC_UNKL cd16772
RING finger, HC subclass, found in RING finger protein unkempt-like (UNKL) and similar ...
206-244 9.95e-04

RING finger, HC subclass, found in RING finger protein unkempt-like (UNKL) and similar proteins; UNKL, also known as zinc finger CCCH domain-containing protein 5-like, is a putative E3 ubiquitin-protein ligase that may participate in a protein complex showing an E3 ligase activity regulated by RAC1. It shows high sequence similarity with RING finger protein unkempt (UNK), which is a metazoan-specific zinc finger protein enriched in embryonic brains, and may play a broad regulatory role during the formation of the central nervous system (CNS). UNKL contains several CCCH-type zinc fingers at the N-terminus, and a C3HC4-type RING-HC finger at its C-terminus.


Pssm-ID: 438428  Cd Length: 44  Bit Score: 36.30  E-value: 9.95e-04
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQSCPVCRSRV 244
Cdd:cd16772    3 CIVCQERDRSIVLQPCQHYVLCEHCAASKPECPYCKTKI 41
RING-HC_MIB1_rpt3 cd16727
third RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also ...
205-245 2.98e-03

third RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of three C3HC4-type RING-HC fingers. This model corresponds to the third RING-HC finger.


Pssm-ID: 438387  Cd Length: 46  Bit Score: 34.72  E-value: 2.98e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 530381841 205 LCMVCCEEEINSTFCpCGHTvCCESCAAQLQSCPVCRSRVE 245
Cdd:cd16727    2 MCPVCLDRLKNMIFL-CGHG-TCQLCGDRMSECPICRKAIE 40
mRING-HC-C3HC5_MGRN1-like cd16789
Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 ...
205-241 3.10e-03

Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 (MGRN1), RING finger protein 157 (RNF157) and similar proteins; MGRN1, also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. MGRN1 interacts with cytosolic prion proteins (PrPs) that are linked with neurodegeneration. It also interacts with expanded polyglutamine proteins, and suppresses misfolded polyglutamine aggregation and cytotoxicity. Moreover, MGRN1 inhibits melanocortin receptor signaling by competition with Galphas, suggesting a novel pathway for melanocortin signaling from the cell surface to the nucleus. MGRN1 also interacts with and ubiquitylates TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, and regulates endosomal trafficking. A null mutation in the gene encoding MGRN1 causes spongiform neurodegeneration, suggesting a link between dysregulation of endosomal trafficking and spongiform neurodegeneration. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in the brain. It is a homolog of the E3 ligase mahogunin ring finger-1 (MGRN1). In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. Both MGRN1 and RNF157 contain a modified C3HC5-type RING-HC finger, and a functionally uncharacterized region, known as domain associated with RING2 (DAR2), N-terminal to the RING finger. The C3HC5-type RING-HC finger is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438443 [Multi-domain]  Cd Length: 42  Bit Score: 34.59  E-value: 3.10e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQLQ----SCPVCR 241
Cdd:cd16789    2 ECVICLSDPRDTAVLPCRHLCLCSDCAEVLRyqsnKCPICR 42
COG5236 COG5236
Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only];
201-247 3.60e-03

Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only];


Pssm-ID: 227561 [Multi-domain]  Cd Length: 493  Bit Score: 38.46  E-value: 3.60e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 530381841 201 KEAMLCMVCCEEEINSTFCPCGHTVcCESCAAQL------QSCPVCRSRVEHV 247
Cdd:COG5236   59 EENMNCQICAGSTTYSARYPCGHQI-CHACAVRLralymqKGCPLCRTETEAV 110
mRING-HC-C3HC5_RNF26 cd16788
Modified RING finger, HC subclass (C3HC5-type), found in RING finger protein 26 (RNF26) and ...
205-251 6.30e-03

Modified RING finger, HC subclass (C3HC5-type), found in RING finger protein 26 (RNF26) and similar proteins; RNF26 is an E3 ubiquitin ligase that temporally regulates virus-triggered type I interferon induction by increasing the stability of Mediator of IRF3 activation, MITA, also known as STING, through K11-linked polyubiquitination of MITA after viral infection, and promoting the degradation of IRF3, another important component required for virus-triggered interferon induction. Although RNF26 substrates of ubiquitination remain unclear at present, RNF26 upregulation in gastric cancer might be implicated in carcinogenesis through dysregulation of growth regulators. RNF26 contains an N-terminal leucine zipper domain and a C-terminal modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438442 [Multi-domain]  Cd Length: 60  Bit Score: 34.31  E-value: 6.30e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAAQL-------QSCPVCRSRVEHVQHVY 251
Cdd:cd16788    7 KCVICQDQSKTVLILPCRHMCLCRQCANILlqqpvyrRNCPLCRTMILQTLDVY 60
RING-HC_Cbl-c cd16710
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-c and similar proteins; ...
205-245 6.49e-03

RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-c and similar proteins; Cbl-c, also known as RING finger protein 57 (RNF57), SH3-binding protein Cbl-3, SH3-binding protein Cbl-c, or signal transduction protein Cbl-c, is an E3 ubiquitin-protein ligase expressed exclusively in epithelial cells. It contains a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a C3HC4-type RING-HC finger, and a short proline-rich region, but lacks the ubiquitin-associated (UBA) leucine zipper motif that are present in Cbl and Cbl-b. Cbl-c acts as a regulator of epidermal growth factor receptor (EGFR)-mediated signal transduction. It also suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Moreover, Cbl-c ubiquitinates and downregulates RETMEN2A and implicates Enigma (PDLIM7) as a positive regulator of RETMEN2A by blocking Cbl-mediated ubiquitination and degradation. The ubiquitin ligase activity of Cbl-c is increased via the interaction of its RING-HC finger domain with a LIM domain of the paxillin homolog, hydrogen peroxide induced construct 5 (Hic-5).


Pssm-ID: 438370 [Multi-domain]  Cd Length: 65  Bit Score: 34.68  E-value: 6.49e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 530381841 205 LCMVCCEEEINSTFCPCGHTVCCESCAA----QLQSCPVCRSRVE 245
Cdd:cd16710   15 LCKICAERDKDVRIEPCGHLLCSCCLAAwqhsDSQTCPFCRCEIK 59
PEX10 COG5574
RING-finger-containing E3 ubiquitin ligase [Posttranslational modification, protein turnover, ...
188-244 7.41e-03

RING-finger-containing E3 ubiquitin ligase [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 227861 [Multi-domain]  Cd Length: 271  Bit Score: 37.18  E-value: 7.41e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 530381841 188 QQTRVLQEKLRKlkeamlCMVCCEEEINSTFCPCGHTVCC-----ESCAAQLQSCPVCRSRV 244
Cdd:COG5574  206 NGLPFIPLADYK------CFLCLEEPEVPSCTPCGHLFCLsclliSWTKKKYEFCPLCRAKV 261
mRING-HC-C3HC5_NEU1A cd16785
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1A (NEURL1A) ...
206-251 7.64e-03

Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1A (NEURL1A) and similar proteins; NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in the medulloblastoma. NEURL1A contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain.


Pssm-ID: 438439 [Multi-domain]  Cd Length: 59  Bit Score: 34.19  E-value: 7.64e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 530381841 206 CMVCCEEEINSTFCPCGHTVCCESCAAQLQ-----SCPVCRSRVEHVQHVY 251
Cdd:cd16785    7 CTICYENAVDTVIYTCGHMCLCYACGLRLKkmlnaCCPICRRAIKDIIKTY 57
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH