Herpes simplex virus DNA replication

Annu Rev Biochem. 1997:66:347-84. doi: 10.1146/annurev.biochem.66.1.347.

Abstract

The Herpesviridae comprise a large class of animal viruses of considerable public health importance. Of the Herpesviridae, replication of herpes simplex virustype-1 (HSV-1) has been the most extensively studied. The linear 152-kbp HSV-1 genome contains three origins of DNA replication and approximately 75 open-reading frames. Of these frames, seven encode proteins that are required for originspecific DNA replication. These proteins include a processive heterodimeric DNA polymerase, a single-strand DNA-binding protein, a heterotrimeric primosome with 5'-3' DNA helicase and primase activities, and an origin-binding protein with 3'-5' DNA helicase activity. HSV-1 also encodes a set of enzymes involved in nucleotide metabolism that are not required for viral replication in cultured cells. These enzymes include a deoxyuridine triphosphatase, a ribonucleotide reductase, a thymidine kinase, an alkaline endo-exonuclease, and a uracil-DNA glycosylase. Host enzymes, notably DNA polymerase alpha-primase, DNA ligase I, and topoisomerase II, are probably also required. Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication. The latter generates concatemers that are cleaved and packaged into infectious viral particles. The rolling-circle phase of HSV-1 DNA replication has been reconstituted in vitro by a complex containing several of the HSV-1 encoded DNA replication enzymes. Reconstitution of the theta phase has thus far eluded workers in the field and remains a challenge for the future.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • DNA Replication*
  • DNA, Viral / biosynthesis*
  • Herpesvirus 1, Human / genetics*
  • Humans
  • Protein Binding
  • Viral Proteins / metabolism

Substances

  • DNA, Viral
  • Viral Proteins