Ethanol feeding enhances inflammatory cytokine expression in lipopolysaccharide-induced hepatitis

J Gastroenterol Hepatol. 1997 Apr;12(4):305-13. doi: 10.1111/j.1440-1746.1997.tb00426.x.

Abstract

Elevated concentrations of plasma tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 and IL-6 have been detected in patients with alcoholic hepatitis and have been implicated in the pathogenesis of hepatocyte necrosis. The present study used a rat model to conduct a detailed histological and biochemical examination of the expression of various pro-inflammatory cytokines and associated liver pathology in ethanol-potentiated lipopolysaccharide (LPS)-induced liver injury. Male Wistar rats were pair-fed either the control or ethanol-containing (36% of caloric intake as ethanol) form of the Lieber-DeCarli liquid diet for 6 weeks. Liver injury was induced by the i.v. injection of LPS (1 microgram/g bodyweight), with animals being killed at 0, 1, 3, 6, 12 and 24 h after injection. At the later time points, plasma transaminase and transpeptidase activities were significantly elevated in ethanol-fed LPS-treated rats compared with control-fed LPS-treated animals. At these times after LPS treatment, hepatocytes in ethanol-fed animals displayed fatty change and necrosis with an associated neutrophil polymorph infiltrate. Time course analysis revealed that plasma TNF-alpha (1-3 h post-LPS) and IL-6 (3 h post-LPS) bioactivity was significantly elevated in ethanol-fed compared with control-fed animals. No difference was seen in plasma IL-1 alpha concentration (maximal in both groups 6 h post-LPS). The expression of TNF-alpha, IL-1 alpha, IL-1 beta and IL-6 mRNA were elevated between 1 and 6 h post-LPS in the livers of both control and ethanol-fed rats. However, ethanol-fed LPS-treated animals exhibited significantly higher maximal expression of IL-1 and IL-6 mRNA. Comparison of the appearance of cytokine mRNA and plasma bioactivity indicated an effect of ethanol feeding on post-transcriptional processing and/or the kinetics of the circulating cytokines. Elevated levels of both hepatic cytokine mRNA expression and the preceding plasma cytokines are presumably a necessary prerequisite for hepatic injury seen in this model and, therefore, possibly for the damage seen in human alcoholics. Further studies using this model may lead to significant advances in our understanding of the pathogenic mechanisms of alcoholic liver disease in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alanine Transaminase / blood
  • Animals
  • Aspartate Aminotransferases / blood
  • Chemical and Drug Induced Liver Injury / etiology
  • Chemical and Drug Induced Liver Injury / metabolism*
  • Cytokines / blood*
  • Ethanol / toxicity*
  • Hepatitis, Alcoholic / metabolism*
  • Humans
  • Interleukin-1 / blood
  • Interleukin-6 / blood
  • Lipopolysaccharides / toxicity*
  • Male
  • Rats
  • Rats, Wistar
  • Tumor Necrosis Factor-alpha / analysis
  • gamma-Glutamyltransferase / blood

Substances

  • Cytokines
  • Interleukin-1
  • Interleukin-6
  • Lipopolysaccharides
  • Tumor Necrosis Factor-alpha
  • Ethanol
  • gamma-Glutamyltransferase
  • Aspartate Aminotransferases
  • Alanine Transaminase