Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma

Biochem Pharmacol. 1996 Mar 8;51(5):707-15. doi: 10.1016/s0006-2952(95)02393-3.

Abstract

Because changes in intracellular Ca2+ affect progression through the mitotic cell cycle, we investigated the role of Ca2+-binding proteins in regulating cell cycle progression. Evidence was found demonstrating that the activation of Ca2+/calmodulin-dependent protein kinase (CaM kinase) inhibits cell cycle progression in small cell lung carcinoma (SCLC) cells. We also demonstrated that SCLC cells express both CaM kinase type II (CaMKII) and CaM kinase type IV (CaMKIV). Five independent SCLC cell lines expressed proteins reactive with antibody to the CaMKII beta subunit, but none expressed detectable proteins reactive with antibody to the CaMKII alpha subunit. All SCLC cell lines tested expressed both the alpha and beta isoforms of CaMKIV. Immunoprecipitation of CaMKII from SCLC cells yielded multiple proteins that autophosphorylated in the presence of Ca2+ / calmodulin. Autophosphorylation was inhibited by the CaMKII(281-302) peptide, which corresponds to the CaMKII autoinhibitory domain, and by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), a specific CaM kinase antagonist. Influx of Ca2+ through voltage-gated Ca2+ channels stimulated phosphorylation of CaMKII in SCLC cells, and this was inhibited by KN-62. Incubation of SCLC cells of KN-62 potently inhibited DNA synthesis, and slowed progression through S phase. Similar anti-proliferative effects of KN-62 occurred in SK-N-SH human neuroblastoma cells, which express both CaMKII and CaMKIV, and in K562 human chronic myelogenous leukemia cells, which express CaMKII but not CaMKIV. The expression of both CaMKII and CaMKIV by SCLC cells, and the sensitivity of these cells to the anti-proliferative effects of KN-62, suggest a role for CaM kinase in regulating SCLC proliferation.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine* / analogs & derivatives*
  • Calcium / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinase Type 4
  • Calcium-Calmodulin-Dependent Protein Kinases / antagonists & inhibitors
  • Calcium-Calmodulin-Dependent Protein Kinases / physiology*
  • Carcinoma, Small Cell / enzymology*
  • Carcinoma, Small Cell / pathology
  • Cell Division / drug effects
  • DNA / biosynthesis*
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Isoquinolines / pharmacology*
  • Lung Neoplasms / enzymology*
  • Lung Neoplasms / pathology
  • Piperazines / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Enzyme Inhibitors
  • Isoquinolines
  • Piperazines
  • KN 62
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • DNA
  • CAMK4 protein, human
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinase Type 4
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Calcium