Activation of human neutrophils induces an interaction between the integrin beta 2-subunit (CD18) and the actin binding protein alpha-actinin

J Immunol. 1993 Oct 1;151(7):3795-807.

Abstract

Mac-1 and LFA-1, members of the leukocyte or CD18 integrin subfamily of adhesion molecules, rapidly change from a low avidity to a high avidity state on activation of neutrophils by various agonists. The control of CD18 integrin-dependent neutrophil adhesion and the mechanisms that regulate integrin avidity are poorly understood. Cytoplasmic domain deletion experiments indicate that the cytoplasmic domains of integrins are necessary for proper integrin function and suggest that interactions with intracellular proteins are involved. We have focused on identifying cytoskeletal proteins that interact with the cytoplasmic domain of the beta-subunit (beta 2 or CD18) common to the leukocyte subfamily of integrins, which include LFA-1, Mac-1, and p150,95. The actin binding protein alpha-actinin associates in vitro with a peptide corresponding to a portion of the CD18 cytoplasmic domain in solid phase binding assays and affinity chromatography experiments. The peptide sequence within the CD18 cytoplasmic domain that binds alpha-actinin is homologous with a region in the cytoplasmic domain of the integrin beta 1-subunit, which also binds alpha-actinin. We demonstrate that the association of alpha-actinin with CD18 is physiologically relevant by coimmunoprecipitating CD18 with alpha-actinin from stimulated human neutrophils under nondenaturing conditions. Using a mAb against CD18 to probe Western blots of immunoprecipitated complexes, CD18 was found to coprecipitate with alpha-actinin when cells were activated with the chemotactic peptide FMLP or with the cytokines leukotriene B4 or TNF-alpha. Very little CD18 coprecipitates with alpha-actinin from unactivated cells. FMLP concentrations as low as 10 nM were sufficient to induce the association of CD18 with alpha-actinin; very little association was detected in cells activated with 1 nM FMLP. The association between alpha-actinin and CD18 was transient, peaking 5-10 min after activation and decreasing to near resting levels by 20 min. CD18 did not coimmunoprecipitate with talin or vinculin in vivo. We conclude that activation of neutrophils results in an alpha-actinin-mediated association between CD18 integrins and actin filaments. In addition to its actin bundling activity, alpha-actinin has a major function as an actin membrane linker molecule, and integrin avidity may be affected by an association with the actin cytoskeleton involving alpha-actinin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actinin / isolation & purification
  • Actinin / metabolism*
  • Adult
  • Amino Acid Sequence
  • Antigens, CD / metabolism*
  • CD18 Antigens
  • Chromatography, Affinity
  • Cytoplasm / metabolism
  • Humans
  • Molecular Sequence Data
  • N-Formylmethionine Leucyl-Phenylalanine / pharmacology
  • Neutrophils / physiology*

Substances

  • Antigens, CD
  • CD18 Antigens
  • Actinin
  • N-Formylmethionine Leucyl-Phenylalanine