Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA

Apoptosis. 2024 Apr;29(3-4):460-481. doi: 10.1007/s10495-023-01908-3. Epub 2023 Nov 28.

Abstract

Previous research has demonstrated that the conversion of hepatocellular carcinoma (HCC) to intrahepatic cholangiocarcinoma (iCCA) can be stimulated by manipulating the tumor microenvironment linked with necroptosis. However, the specific cells regulating the necroptosis microenvironment have not yet been identified. Additionally, further inquiry into the mechanism of how the tumor microenvironment regulates necroptosis and its impact on primary liver cancer(PLC) progression may be beneficial for precision therapy. We recruited a single-cell RNA sequencing dataset (scRNA-seq) with 34 samples from 4 HCC patients and 3 iCCA patients, and a Spatial Transcriptomic (ST) dataset including one each of HCC, iCCA, and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). Quality control, dimensionality reduction and clustering were based on Seurat software (v4.2.2) process and batch effects were removed by harmony (v0.1.1) software. The pseudotime analysis (also known as cell trajectory) in the single cell dataset was performed by monocle2 software (v2.24.0). Calculation of necroptosis fraction was performed by AUCell (v1.16.0) software. Switch gene analysis was performed by geneSwitches(v0.1.0) software. Dimensionality reduction, clustering, and spatial image in ST dataset were performed by Seurat (v4.0.2). Tumor cell identification, tumor subtype characterization, and cell type deconvolution in spot were performed by SpaCET (v1.0.0) software. Immunofluorescence and immunohistochemistry experiments were used to prove our conclusions. Analysis of intercellular communication was performed using CellChat software (v1.4.0). ScRNA-seq analysis of HCC and iCCA revealed that necroptosis predominantly occurred in the myeloid cell subset, particularly in FCGBP + SPP1 + tumor-associated macrophages (TAMs), which had the highest likelihood of undergoing necroptosis. The existence of macrophages undergoing necroptosis cell death was further confirmed by immunofluorescence. Regions of HCC with poor differentiation, cHCC-CCA with more cholangiocarcinoma features, and the tumor region of iCCA shared spatial colocalization with FCGBP + macrophages, as confirmed by spatial transcriptomics, immunohistochemistry and immunofluorescence. Pseudotime analysis showed that premalignant cells could progress into two directions, one towards HCC and the other towards iCCA and cHCC-CCA. Immunofluorescence and immunohistochemistry experiments demonstrated that the number of macrophages undergoing necroptosis in cHCC-CCA was higher than in iCCA and HCC, the number of macrophages undergoing necroptosis in cHCC-CCA with cholangiocarcinoma features was more than in cHCC-CCA with hepatocellular carcinoma features. Further investigation showed that myeloid cells with the highest necroptosis score were derived from the HCC_4 case, which had a severe inflammatory background on pathological histology and was likely to progress towards iCCA and cHCC-CCA. Switchgene analysis indicated that S100A6 may play a significant role in the progression of premalignant cells towards iCCA and cHCC-CCA. Immunohistochemistry confirmed the expression of S100A6 in PLC, the more severe inflammatory background of the tumor area, the more cholangiocellular carcinoma features of the tumor area, S100A6 expression was higher. The emergence of necroptosis microenvironment was found to be significantly associated with FCGBP + SPP1 + TAMs in PLC. In the presence of necroptosis microenvironment, premalignant cells appeared to transform into iCCA or cHCC-CCA. In contrast, without a necroptosis microenvironment, premalignant cells tended to develop into HCC, exhibiting amplified stemness-related genes (SRGs) and heightened malignancy.

Keywords: FCGBP; GeneSwitches; Immunofluorescence; Necroptosis; PLC; Pseudotime; ST; ScRNA-seq; TAMs.

MeSH terms

  • Apoptosis
  • Bile Duct Neoplasms* / genetics
  • Bile Duct Neoplasms* / pathology
  • Bile Ducts, Intrahepatic / pathology
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / pathology
  • Cell Adhesion Molecules
  • Cholangiocarcinoma* / genetics
  • Cholangiocarcinoma* / pathology
  • Humans
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / pathology
  • Necroptosis
  • Retrospective Studies
  • Tumor Microenvironment / genetics
  • Tumor-Associated Macrophages / pathology

Substances

  • FCGBP protein, human
  • Cell Adhesion Molecules