The burden of rare variants in DPYS gene is a novel predictor of the risk of developing severe fluoropyrimidine-related toxicity

Hum Genomics. 2023 Nov 9;17(1):99. doi: 10.1186/s40246-023-00546-9.

Abstract

Background: Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity.

Methods: The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework).

Results: SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity.

Conclusion: This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.

Keywords: Clinical implementation; DPYS; Fluoropyrimidine; Next-generation sequencing; PPARD; Rare variant; Toxicity.

MeSH terms

  • Antimetabolites, Antineoplastic / adverse effects
  • Dihydrouracil Dehydrogenase (NADP) / genetics
  • Dihydrouracil Dehydrogenase (NADP) / metabolism
  • Fluorouracil* / adverse effects
  • Gene Frequency
  • Humans
  • Neoplasms* / genetics

Substances

  • Fluorouracil
  • Antimetabolites, Antineoplastic
  • Dihydrouracil Dehydrogenase (NADP)