Downregulation of β-Catenin Contributes to type II Alveolar Epithelial Stem Cell Resistance to Epithelial-Mesenchymal Transition by Lowing Lin28/let-7 Ratios in Fibrosis-Resistant Mice after Thoracic Irradiation

Radiat Res. 2023 Jul 1;200(1):32-47. doi: 10.1667/RADE-22-00165.1.

Abstract

Transdifferentiation of type II alveolar cells (AECII) is a major cause for radiation-induced lung fibrosis (RILF). Cell differentiation phenotype is determined by Lin28 (undifferentiated marker) and let-7 (differentiated marker) in a see-saw-pattern. Therefore, differentiation phenotype can be extrapolated based on Lin28/let-7 ratio. Lin28 is activated by β-catenin. To the best of our knowledge this study was the first to use the single primary AECII freshly isolated from irradiated lungs of fibrosis-resistant C3H/HeNHsd strain to further confirm RILF mechanism by comparing its differences in AECII phenotype status/state and cell differentiation regulators to fibrosis-prone C57BL/6j mice. Results showed that radiation pneumonitis and fibrotic lesions were seen in C3H/HeNHsd and C57BL/6j mouse strains, respectively. mRNAs of E-cadherin, EpCAM, HOPX and proSP-C (epithelial phenotype biomarkers) were significantly downregulated in single primary AECII isolated from irradiated lungs of both strains. Unlike C57BL/6j, α-SMA and Vimentin (mesenchymal phenotype biomarkers) were not upregulated in single AECII from irradiated C3H/HeNHsd. Profibrotic molecules, TGF-β1 mRNA was upregulated and β-catenin was significantly downregulated in AECII after irradiation (both P < 0.01). In contrast, transcriptions for GSK-3β, TGF-β1 and β-catenin were enhanced in isolated single AECII from irradiated C57BL/6j (P < 0.01-P < 0.001). The Lin28/let-7 ratios were much lower in single primary AECII from C3H/HeNHsd after irradiation vs. C57BL/6j. In conclusion, AECII from irradiated C3H/HeNHsd did not undergo epithelial-mesenchymal transition (EMT) and lower ratios of Lin28/let-7 contributed to AECII relatively higher differentiated status, leading to increased susceptibility to radiation stress and a failure in transdifferentiation in the absence of β-catenin. Reducing β-catenin expression and the ratios of Lin28/let-7 may be a promising strategy to prevent radiation fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alveolar Epithelial Cells
  • Animals
  • Down-Regulation
  • Epithelial-Mesenchymal Transition* / radiation effects
  • Fibrosis
  • Glycogen Synthase Kinase 3 beta / genetics
  • Glycogen Synthase Kinase 3 beta / metabolism
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Pulmonary Fibrosis*
  • Stem Cells / metabolism
  • Transforming Growth Factor beta1 / metabolism
  • beta Catenin* / genetics

Substances

  • beta Catenin
  • Glycogen Synthase Kinase 3 beta
  • Transforming Growth Factor beta1
  • Lin-28 protein, mouse
  • mirnlet7 microRNA, mouse