Lin28 promoting the protective effect of PMSCs on hepatic ischaemia-reperfusion injury by regulating glucose metabolism

J Cell Mol Med. 2023 May;27(10):1384-1397. doi: 10.1111/jcmm.17739. Epub 2023 Apr 2.

Abstract

Human placental mesenchymal stem cells (PMSCs) can prevent liver ischaemia-reperfusion injury (LIRI). However, their therapeutic effects are limited. Therefore, additional research is required to elucidate the mechanisms of PMSC-mediated LIRI prevention and enhance the related therapeutic effects. This study aimed to examine the role of the Lin28 protein in the regulation of glucose metabolism in PMSCs. Further, it explored whether Lin28 could enhance the protective effects of PMSCs against LIRI and investigated the underlying mechanisms. Western blotting was performed to examine Lin28 expression in PMSCs under hypoxic conditions. A Lin28 overexpression construct was introduced into PMSCs, and the effect on glucose metabolism was examined using a glucose metabolism kit. Further, the expression of some proteins involved in glucose metabolism and the PI3K-AKT pathway and the levels of microRNA Let-7a-g were examined using western blots and real-time quantitative PCR, respectively. To examine the relationship between Lin28 and the PI3K-Akt pathway, the effects of AKT inhibitor treatment on the changes induced by Lin28 overexpression were examined. Subsequently, AML12 cells were co-cultured with PMSCs to elucidate the mechanisms via which PMSCs prevent hypoxic injury in liver cells in vitro. Finally, C57BL/6J mice were used to establish a partial warm ischaemia-reperfusion model. The mice received intravenous injections containing PMSCs (control and Lin28-overexpressing PMSCs). Finally, their serum transaminase levels and degree of liver injury were assessed using biochemical and histopathological methods, respectively. Lin28 was upregulated under hypoxic conditions in PMSCs. Lin28 exerted protective effects against hypoxia-induced cell proliferation. Moreover, it increased the glycolytic capacity of PMSCs, allowing PMSCs to produce more energy under hypoxic conditions. Lin28 also activated the PI3K-Akt signalling pathway under hypoxic conditions, and its effects were attenuated by AKT inhibition. Lin28 overexpression could protect cells against LIRI-induced liver damage, inflammation and apoptosis and could also attenuate hypoxia-induced hepatocyte injury. Lin28 enhances glucose metabolism under hypoxic conditions in PMSCs, thereby exerting protective effects against LIRI by activating the PI3K-Akt signalling pathway. Our study is the first to report the potential of genetically modified PMSCs for LIRI treatment.

Keywords: PI3K-Akt pathway; glucose metabolism; human placental mesenchymal stem cells; lactate dehydrogenase a; liver ischaemia-reperfusion injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Female
  • Glucose / pharmacology
  • Humans
  • Hypoxia
  • Liver Diseases*
  • Mice
  • Mice, Inbred C57BL
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Placenta / metabolism
  • Pregnancy
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Reperfusion Injury* / genetics
  • Reperfusion Injury* / metabolism
  • Reperfusion Injury* / prevention & control

Substances

  • Glucose
  • Lin28A protein, human
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt