LINC00858 facilitates formation of hepatic metastases from colorectal cancer via regulating the miR-132-3p/IGF2BP1 axis

Biol Chem. 2023 Mar 2;405(2):129-141. doi: 10.1515/hsz-2022-0328. Print 2024 Feb 26.

Abstract

Hepatic metastasis is a major cause of colorectal cancer (CRC)-related deaths. Presently, the role of long non-coding RNAs (lncRNAs) in hepatic metastases from CRC is elusive. We dissected possible interplay between LINC00858/miR-132-3p/IGF2BP1 via bioinformatics approaches. Subsequently we analyzed mRNA expression of LINC00858, miR-132-3p and IGF2BP1 through qRT-PCR. Western blot was used to detect protein expression of IGF2BP1. RNA immunoprecipitation chip and dual-luciferase assay validated interaction between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Cell viability, invasion, and migration were examined via CCK-8, colony formation, transwell and wound healing assays. Effect of LINC00858 on CRC hepatic metastases was validated via in vivo assay. Upregulated LINC00858 and IGF2BP1, and downregulated miR-132-3p were predicted in tumor tissues of patients with hepatic metastases from CRC. There were targeting relationships between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Besides, LINC00858 facilitated progression of CRC cells. Rescue assay suggested that silencing LINC00858 suppressed CRC cell progression, while further silencing miR-132-3p or overexpressing IGF2BP1 reversed such effects. LINC00858 could facilitate CRC tumor growth and hepatic metastases. LINC00858 induced CRC hepatic metastases via regulating miR-132-3p/ IGF2BP1, and this study may deliver a new diagnostic marker for the disease.

Keywords: IGF2BP1; LINC00858; colorectal cancer; hepatic metastasis; miR-132-3p.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Colorectal Neoplasms* / pathology
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms* / genetics
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • MIRN132 microRNA, human