Transcription factor ZNF488 accelerates cervical cancer progression through regulating the MEK/ERK signaling pathway

Histol Histopathol. 2023 Dec;38(12):1381-1390. doi: 10.14670/HH-18-568. Epub 2022 Dec 2.

Abstract

Cervical cancer (CC) is one of the most common gynecological malignancies worldwide. Zinc Finger Protein 488 (ZNF488) has been identified as an oncogene in nasopharyngeal carcinoma. However, its biological role and potential mechanism in CC remain to be elucidated. In the present study, upregulation of ZNF488 expression in human CC tissues was found in clinical samples and analyzed in The Cancer Genome Atlas (TCGA) dataset, which was associated with clinical staging and lymph node metastasis. Quantitative real time polymerase chain reaction (PCR) and western blot assays indicated that the expression of ZNF488 was up-regulated in CC cells. Cell colony formation and cell cycle analysis assays suggested that ZNF488 promoted CC cell proliferation and cycle progression. Knockdown of ZNF488 inhibited tumor growth of xenograft tumor mice in vivo, in agreement with the levels of ZNF488 and Ki-67. Moreover, transwell and western assays demonstrated that ZNF488 enhanced CC cell migration and invasion. Additionally, knockdown of ZNF488 also inhibited lung metastasis of CC cells in vivo. Further mechanism analysis implied that ZNF488 promoted the MEK/ERK signaling pathway. ERK inhibitor PD98059 significantly weakened the proliferation and epithelial-mesenchymal transformation (EMT) promotion effect of ZNF488. Collectively, ZNF488 exerts its oncogene function partially through modulating MEK/ERK signaling pathway in CC, indicating that ZNF488 may provide a promising therapeutic target for the treatment of CC.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Epithelial-Mesenchymal Transition / genetics
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mice
  • Mitogen-Activated Protein Kinase Kinases / metabolism
  • Nasopharyngeal Neoplasms*
  • Signal Transduction
  • Transcription Factors / genetics
  • Uterine Cervical Neoplasms* / metabolism

Substances

  • Transcription Factors
  • Mitogen-Activated Protein Kinase Kinases