Genome-wide off-target analyses of CRISPR/Cas9-mediated T-cell receptor engineering in primary human T cells

Clin Transl Immunology. 2022 Jan 23;11(1):e1372. doi: 10.1002/cti2.1372. eCollection 2022.

Abstract

Objectives: Exploiting the forces of human T cells for treatment has led to the current paradigm of emerging immunotherapy strategies. Genetic engineering of the T-cell receptor (TCR) redirects specificity, ablates alloreactivity and brings significant progress and off-the-shelf options to emerging adoptive T-cell transfer (ACT) approaches. Targeted CRISPR/Cas9-mediated double-strand breaks in the DNA enable knockout or knock-in engineering.

Methods: Here, we perform CRISPR/Cas9-mediated TCR knockout using a therapeutically relevant ribonucleoprotein (RNP) delivery method to assess the safety of genetically engineered T-cell products. Whole-genome sequencing was performed to analyse whether CRISPR/Cas9-mediated DNA double-strand break at the TCR locus is associated with off-target events in human primary T cells.

Results: TCRα chain and TCRβ chain knockout leads to high on-target InDel frequency and functional knockout. None of the predicted off-target sites could be confirmed experimentally, whereas whole-genome sequencing and manual Integrative Genomics Viewer (IGV) review revealed 9 potential low-frequency off-target events genome-wide. Subsequent amplification and targeted deep sequencing in 7 of 7 evaluable loci did not confirm these low-frequency InDels. Therefore, off-target events are unlikely to be caused by the CRISPR/Cas9 engineering.

Conclusion: The combinatorial approach of whole-genome sequencing and targeted deep sequencing confirmed highly specific genetic engineering using CRISPR/Cas9-mediated TCR knockout without potentially harmful exonic off-target effects.

Keywords: CRISPR/Cas9; T‐cell receptor; T‐cell therapy; genetic engineering; off‐target; whole‐genome sequencing.