Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy

Exp Neurol. 2021 Aug:342:113724. doi: 10.1016/j.expneurol.2021.113724. Epub 2021 Apr 26.

Abstract

Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.

Keywords: Basket cells; Cognitive impairment; Disinhibition; Perisomatic inhibition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CA1 Region, Hippocampal / drug effects
  • CA1 Region, Hippocampal / metabolism*
  • Cholecystokinin / biosynthesis*
  • Cholecystokinin / genetics
  • Disease Models, Animal
  • Epilepsy, Temporal Lobe / chemically induced
  • Epilepsy, Temporal Lobe / genetics
  • Epilepsy, Temporal Lobe / metabolism*
  • Female
  • GABAergic Neurons / drug effects
  • GABAergic Neurons / metabolism*
  • Gene Expression
  • Interneurons / drug effects
  • Interneurons / metabolism*
  • Kainic Acid / toxicity*
  • Male
  • Mice
  • Mice, Inbred C57BL

Substances

  • Cholecystokinin
  • Kainic Acid