IDO1 Signaling through GCN2 in a Subpopulation of Gr-1+ Cells Shifts the IFNγ/IL6 Balance to Promote Neovascularization

Cancer Immunol Res. 2021 May;9(5):514-528. doi: 10.1158/2326-6066.CIR-20-0226. Epub 2021 Feb 23.

Abstract

In addition to immunosuppression, it is generally accepted that myeloid-derived suppressor cells (MDSC) also support tumor angiogenesis. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) has been implicated in promoting neovascularization through its positioning as a key regulatory node between the inflammatory cytokines IFNγ and IL6. Here, we report that within the heterogeneous expanse of Gr-1+ MDSCs, both IDO1 expression and the ability to elicit neovascularization in vivo were associated with a minor subset of autofluorescent, CD11blo cells. IDO1 expression was further restricted to a discrete, CD11c and asialo-GM1 double-positive subpopulation of these cells, designated here as IDVCs (IDO1-dependent vascularizing cells), due to the dominant role that IDO1 activity in these cells was found to play in promoting neovascularization. Mechanistically, the induction of IDO1 in IDVCs provided a negative-feedback constraint on the antiangiogenic effect of host IFNγ by intrinsically signaling for the production of IL6 through general control nonderepressible 2 (GCN2)-mediated activation of the integrated stress response. These findings reveal fundamental molecular and cellular insights into how IDO1 interfaces with the inflammatory milieu to promote neovascularization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Disease Models, Animal
  • Female
  • Humans
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / genetics
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / metabolism*
  • Inflammation / metabolism*
  • Inflammation / pathology
  • Interferon-gamma / genetics
  • Interferon-gamma / metabolism*
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Knockout
  • Neoplasm Metastasis
  • Neoplasms / etiology
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction

Substances

  • IDO1 protein, mouse
  • IFNG protein, mouse
  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Interleukin-6
  • interleukin-6, mouse
  • Interferon-gamma
  • Eif2ak4 protein, mouse
  • Protein Serine-Threonine Kinases