NBCe1-A is required for the renal ammonia and K+ response to hypokalemia

Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F402-F421. doi: 10.1152/ajprenal.00481.2019. Epub 2019 Dec 16.

Abstract

Hypokalemia increases ammonia excretion and decreases K+ excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na+-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K+ control or K+-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K+-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K+ excretion during the K+-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na+ channel α-, β-, and γ-subunits nor of H+-K+-ATPase α1- or α2-subunits correlated with changes in urinary K+. We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K+ excretion.

Keywords: ammonia; potassium; proximal tubule.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acidosis / genetics
  • Acidosis / metabolism
  • Acidosis / physiopathology
  • Aldosterone / urine
  • Ammonia / urine*
  • Animals
  • Biomarkers / blood
  • Biomarkers / urine
  • Disease Models, Animal
  • Epithelial Sodium Channels / metabolism
  • Glutamate-Ammonia Ligase / metabolism
  • H(+)-K(+)-Exchanging ATPase / genetics
  • H(+)-K(+)-Exchanging ATPase / metabolism
  • Hypokalemia / genetics
  • Hypokalemia / metabolism*
  • Hypokalemia / physiopathology
  • Kidney Tubules, Proximal / metabolism*
  • Kidney Tubules, Proximal / physiopathology
  • Mice, Knockout
  • Phosphorylation
  • Potassium, Dietary / blood*
  • Renal Elimination*
  • Sodium-Bicarbonate Symporters / deficiency
  • Sodium-Bicarbonate Symporters / genetics
  • Sodium-Bicarbonate Symporters / metabolism*
  • Solute Carrier Family 12, Member 3 / metabolism

Substances

  • Biomarkers
  • Epithelial Sodium Channels
  • Potassium, Dietary
  • Slc12a3 protein, mouse
  • Slc4a4 protein, mouse
  • Sodium-Bicarbonate Symporters
  • Solute Carrier Family 12, Member 3
  • Aldosterone
  • Ammonia
  • H(+)-K(+)-Exchanging ATPase
  • Glul protein, mouse
  • Glutamate-Ammonia Ligase