Modulation of Mutant KrasG12D -Driven Lung Tumorigenesis In Vivo by Gain or Loss of PCDH7 Function

Mol Cancer Res. 2019 Feb;17(2):594-603. doi: 10.1158/1541-7786.MCR-18-0739. Epub 2018 Nov 8.

Abstract

PROTOCADHERIN 7 (PCDH7), a transmembrane receptor and member of the Cadherin superfamily, is frequently overexpressed in lung adenocarcinoma and is associated with poor clinical outcome. Although PCDH7 was recently shown to promote transformation and facilitate brain metastasis in lung and breast cancers, decreased PCDH7 expression has also been documented in colorectal, gastric, and invasive bladder cancers. These data suggest context-dependent functions for PCDH7 in distinct tumor types. Given that PCDH7 is a potentially targetable molecule on the surface of cancer cells, further investigation of its role in tumorigenesis in vivo is needed to evaluate the therapeutic potential of its inhibition. Here, we report the analysis of novel PCDH7 gain- and loss-of-function mouse models and provide compelling evidence that this cell-surface protein acts as a potent lung cancer driver. Employing a Cre-inducible transgenic allele, we demonstrated that enforced PCDH7 expression significantly accelerates KrasG12D -driven lung tumorigenesis and potentiates MAPK pathway activation. Furthermore, we performed in vivo somatic genome editing with CRISPR/Cas9 in KrasLSL-G12D ; Tp53fl/fl (KP) mice to assess the consequences of PCDH7 loss of function. Inactivation of PCDH7 in KP mice significantly reduced lung tumor development, prolonged survival, and diminished phospho-activation of ERK1/2. Together, these findings establish a critical oncogenic function for PCDH7 in vivo and highlight the therapeutic potential of PCDH7 inhibition for lung cancer. Moreover, given recent reports of elevated or reduced PCDH7 in distinct tumor types, the new inducible transgenic model described here provides a robust experimental system for broadly elucidating the effects of PCDH7 overexpression in vivo. IMPLICATIONS: In this study, we establish a critical oncogenic function for PCDH7 in vivo using novel mouse models and CRISPR/Cas9 genome editing, and we validate the therapeutic potential of PCDH7 inhibition for lung cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung / genetics*
  • Adenocarcinoma of Lung / metabolism
  • Adenocarcinoma of Lung / pathology
  • Animals
  • Cadherins / deficiency
  • Cadherins / genetics*
  • Cadherins / metabolism
  • Carcinogenesis
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • MAP Kinase Signaling System
  • Mice
  • Mice, Transgenic
  • Proto-Oncogene Proteins p21(ras) / genetics*
  • Proto-Oncogene Proteins p21(ras) / metabolism
  • Protocadherins
  • Signal Transduction

Substances

  • Cadherins
  • KRAS protein, human
  • PCDH7 protein, human
  • Protocadherins
  • Proto-Oncogene Proteins p21(ras)