Deletion of Rap1b, but not Rap1a or Epac1, Reduces Protein Kinase A-Mediated Thyroid Cancer

Thyroid. 2018 Sep;28(9):1153-1161. doi: 10.1089/thy.2017.0528. Epub 2018 Aug 2.

Abstract

Background: Thyroid cancer is an emerging health problem in the United States and worldwide. With incidence rates of thyroid cancer rapidly rising, the need to develop new treatment options is becoming a priority, and understanding the molecular mechanisms of this disease is crucial to furthering these efforts. Thyroid growth is driven by the TSH/cAMP/PKA signaling pathway, and it has previously been shown that activation of PKA through genetic ablation of the regulatory subunit Prkar1a (Prkar1a KO) is sufficient to cause follicular thyroid cancer in mouse models. cAMP also activates the Epac proteins and their downstream effectors, Rap1a and Rap1b.

Methods: Previously, the authors' laboratory generated a mouse model of follicular thyroid cancer by conferring thyroid-specific deletion of Prkar1a (R1a-TpoKO). To probe the roles of other components of the PKA signaling system in the development of thyroid cancer, this study deleted Rap1 and Epac1 in the setting of the Prkar1a knockout.

Results: Deletion of Rap1 significantly decreases thyroid size and cancer incidence in Prkar1a KO thyroids. Further, isoform-specific ablation of Rap1a and Rap1b implicates Rap1b as the downstream effector of PKA during thyroid carcinogenesis. In vivo modeling provides definitive evidence that Epac1 plays little role in thyroid proliferation and is dispensable for thyroid carcinogenesis arising from the deletion of Prkar1a.

Conclusions: This study demonstrate that PKA signaling to Rap1b is a key signaling node for follicular thyroid carcinogenesis, while Epac1 activity is not required for tumor development. This work sheds new light on the pathways involved in FTC development and identifies a possible target for the development of new therapies in the treatment of FTC.

Keywords: Epac; PKA; PRKAR1A; Rap1; follicular thyroid cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma, Follicular / genetics*
  • Adenocarcinoma, Follicular / metabolism
  • Adenocarcinoma, Follicular / pathology
  • Animals
  • Carcinogenesis / genetics*
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Guanine Nucleotide Exchange Factors / genetics*
  • Guanine Nucleotide Exchange Factors / metabolism
  • Mice
  • Mice, Knockout
  • Thyroid Gland / metabolism
  • Thyroid Gland / pathology
  • Thyroid Neoplasms / genetics*
  • Thyroid Neoplasms / metabolism
  • Thyroid Neoplasms / pathology
  • rap GTP-Binding Proteins / genetics*
  • rap GTP-Binding Proteins / metabolism
  • rap1 GTP-Binding Proteins / genetics*
  • rap1 GTP-Binding Proteins / metabolism

Substances

  • Epac protein, mouse
  • Guanine Nucleotide Exchange Factors
  • Cyclic AMP-Dependent Protein Kinases
  • Rap1b protein, mouse
  • rap GTP-Binding Proteins
  • rap1 GTP-Binding Proteins