miR-34a Regulates Sperm Motility in Zebrafish

Int J Mol Sci. 2017 Dec 10;18(12):2676. doi: 10.3390/ijms18122676.

Abstract

Increasing attention has been focused on the role of microRNAs in post-transcription regulation during spermatogenesis. Recently, the miR-34 family has been shown to be involved in the spermatogenesis, but the clear function of the miR-34 family in spermatogenesis is still obscure. Here we analyzed the function of miR-34a, a member of the miR-34 family, during spermatogenesis using miR-34a knockout zebrafish generated by the clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system. miR-34a knockout zebrafish showed no obvious defects on testis morphology and sperm quantity. However, we found a significant increase in progressive sperm motility that is one of the pivotal factors influencing in vitro fertilization rates, in the knockout zebrafish. Moreover, breeding experiments showed that, when miR-34a-knockout male zebrafish mated with the wide-type females, they had a higher fertilization rate than did the wide-type males. Glycogen synthase kinase-3a (gsk3a), a potential sperm motility regulatory gene was predicted to be targeted by miR-34a, which was further supported by luciferase reporter assays, since a significant decrease of luciferase activity was detected upon ectopic overexpression of miR-34a. Our findings suggest that miR-34a downregulates gsk3a by targeting its 3' untranslated region, and miR-34a/gsk3a interaction modulates sperm motility in zebrafish. This study will help in understanding in the role of the miR-34 family during spermatogenesis and will set paths for further studies.

Keywords: gsk3a; knockout; miR-34a; sperm motility.

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Female
  • Fertilization
  • Gene Knockout Techniques
  • Glycogen Synthase Kinase 3 / genetics*
  • Male
  • MicroRNAs / genetics*
  • Sexual Behavior, Animal
  • Sperm Motility / genetics*
  • Spermatogenesis
  • Spermatozoa / physiology*
  • Zebrafish / genetics
  • Zebrafish / physiology*
  • Zebrafish Proteins / genetics*

Substances

  • 3' Untranslated Regions
  • MIRN34 microRNA, zebrafish
  • MicroRNAs
  • Zebrafish Proteins
  • Glycogen Synthase Kinase 3
  • gsk3ab protein, zebrafish