The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle

Sci Rep. 2017 Oct 26;7(1):14077. doi: 10.1038/s41598-017-13688-3.

Abstract

Control of protein turnover is critical for meiotic progression. Using RiboTag immunoprecipitation, RNA binding protein immunoprecipitation, and luciferase reporter assay, we investigated how rates of mRNA translation, protein synthesis and degradation contribute to the steady state level of Cyclin B1 and B2 in mouse oocytes. Ribosome loading onto Ccnb1 and Mos mRNAs increases during cell cycle reentry, well after germinal vesicle breakdown (GVBD). This is followed by the translation of reporters containing 3' untranslated region of Mos or Ccnb1 and the accumulation of Mos and Cyclin B1 proteins. Conversely, ribosome loading onto Ccnb2 mRNA and Cyclin B2 protein level undergo minimal changes during meiotic reentry. Degradation rates of Cyclin B1 or B2 protein at the GV stage are comparable. The translational activation of Mos and Ccnb1, but not Ccnb2, mRNAs is dependent on the RNA binding protein CPEB1. Inhibition of Cdk1 activity, but not Aurora A kinase activity, prevents the translation of Mos or Ccnb1 reporters, suggesting that MPF is required for their translation in mouse oocytes. Conversely, Ccnb2 translation is insensitive to Cdk1 inhibition. Thus, the poised state that allows rapid meiotic reentry in mouse GV oocytes may be determined by the differential translational control of two Cyclins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Aurora Kinase A / antagonists & inhibitors
  • Aurora Kinase A / metabolism
  • CDC2 Protein Kinase / antagonists & inhibitors
  • CDC2 Protein Kinase / metabolism
  • Cells, Cultured
  • Cyclin B1 / metabolism*
  • Cyclin B2 / metabolism*
  • Female
  • Gene Expression Regulation / drug effects
  • Maturation-Promoting Factor / metabolism
  • Meiosis / drug effects
  • Meiosis / physiology*
  • Mesothelin
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Oocytes / drug effects
  • Oocytes / metabolism*
  • Polyribosomes / metabolism
  • Protein Biosynthesis / drug effects
  • Protein Biosynthesis / physiology
  • Proteolysis
  • Proto-Oncogene Proteins c-mos / metabolism
  • RNA, Messenger / metabolism
  • Transcription Factors / metabolism
  • mRNA Cleavage and Polyadenylation Factors / metabolism

Substances

  • 3' Untranslated Regions
  • Ccnb1 protein, mouse
  • Ccnb2 protein, mouse
  • Cpeb1 protein, mouse
  • Cyclin B1
  • Cyclin B2
  • Msln protein, mouse
  • RNA, Messenger
  • Transcription Factors
  • mRNA Cleavage and Polyadenylation Factors
  • Aurka protein, mouse
  • Aurora Kinase A
  • Proto-Oncogene Proteins c-mos
  • CDC2 Protein Kinase
  • Cdk1 protein, mouse
  • Maturation-Promoting Factor
  • Mesothelin