Phosphorylation of Drebrin and Its Role in Neuritogenesis

Adv Exp Med Biol. 2017:1006:49-60. doi: 10.1007/978-4-431-56550-5_4.

Abstract

Neuritogenesis is an early event in neuronal development in which newborn neurons first form growth cones, as a prerequisite for the formation of axons and dendrites. Growth cones emerge from segmented regions of the lamellipodium of embryonic neurons and grow away from the cell body leaving behind a neurite that will eventually polarise into an axon or dendrite. Growth cones also function to navigate precise routes through the embryo to locate an appropriate synaptic partner. Dynamic interactions between two components of the neuronal cytoskeleton, actin filaments and microtubules, are known to be essential for growth cone formation and hence neuritogenesis. The molecular mechanisms that coordinate interactions between actin filaments and dynamic microtubules during neuritogenesis are beginning to be understood. One candidate pathway coupling actin filaments to microtubules consists of the actin filament-binding protein drebrin and the microtubule-binding +TIP protein EB3. This pathway is regulated proximally by cyclin-dependent kinase 5 phosphorylation of drebrin but the upstream elements in the pathway have yet to be identified.

Keywords: Actin; Cdk5; Drebrin; EB3; Growth cone; Microtubule; Neuritogenesis; Phosphorylation.

Publication types

  • Review

MeSH terms

  • Actins / metabolism
  • Animals
  • Cyclin-Dependent Kinase 5 / genetics*
  • Cyclin-Dependent Kinase 5 / metabolism
  • Cytoskeleton / genetics
  • Cytoskeleton / metabolism
  • Growth Cones / metabolism
  • Humans
  • Microfilament Proteins / genetics
  • Microfilament Proteins / metabolism*
  • Microtubule-Associated Proteins / genetics*
  • Microtubule-Associated Proteins / metabolism
  • Microtubules / genetics
  • Microtubules / metabolism
  • Neurites / metabolism*
  • Neurogenesis / genetics*
  • Neuropeptides / genetics
  • Neuropeptides / metabolism*
  • Phosphorylation

Substances

  • Actins
  • MAPRE3 protein, human
  • Microfilament Proteins
  • Microtubule-Associated Proteins
  • Neuropeptides
  • drebrins
  • Cyclin-Dependent Kinase 5