Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

Sci Rep. 2017 Jan 18:7:40921. doi: 10.1038/srep40921.

Abstract

Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / chemistry
  • Adenosine Diphosphate / metabolism
  • Allosteric Regulation
  • Allosteric Site
  • Binding Sites
  • Catalytic Domain
  • Citric Acid / chemistry
  • Citric Acid / metabolism
  • Crystallography, X-Ray
  • Dimerization
  • Humans
  • Isocitrate Dehydrogenase / chemistry
  • Isocitrate Dehydrogenase / genetics
  • Isocitrate Dehydrogenase / metabolism*
  • Magnesium / chemistry
  • Magnesium / metabolism
  • Molecular Dynamics Simulation
  • Mutagenesis, Site-Directed
  • NAD / chemistry
  • NAD / metabolism*
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism

Substances

  • Protein Subunits
  • NAD
  • Citric Acid
  • Adenosine Diphosphate
  • Isocitrate Dehydrogenase
  • Magnesium