Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma

Med Oncol. 2016 Jul;33(7):70. doi: 10.1007/s12032-016-0785-1. Epub 2016 Jun 4.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC.

Keywords: HCC; NPY; NPY1R; Proliferation.

MeSH terms

  • Animals
  • Blotting, Western
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / mortality
  • Carcinoma, Hepatocellular / pathology*
  • Cell Proliferation / physiology
  • Down-Regulation
  • Female
  • Heterografts
  • Humans
  • Immunohistochemistry
  • Kaplan-Meier Estimate
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / mortality
  • Liver Neoplasms / pathology*
  • MAP Kinase Signaling System / physiology*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Prognosis
  • Real-Time Polymerase Chain Reaction
  • Receptors, Neuropeptide Y / biosynthesis*

Substances

  • Receptors, Neuropeptide Y
  • neuropeptide Y-Y1 receptor