Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7

Proc Natl Acad Sci U S A. 2016 May 24;113(21):5856-61. doi: 10.1073/pnas.1603486113. Epub 2016 May 9.

Abstract

Improper function of voltage-gated sodium channels (NaVs), obligatory membrane proteins for bioelectrical signaling, has been linked to a number of human pathologies. Small-molecule agents that target NaVs hold considerable promise for treatment of chronic disease. Absent a comprehensive understanding of channel structure, the challenge of designing selective agents to modulate the activity of NaV subtypes is formidable. We have endeavored to gain insight into the 3D architecture of the outer vestibule of NaV through a systematic structure-activity relationship (SAR) study involving the bis-guanidinium toxin saxitoxin (STX), modified saxitoxins, and protein mutagenesis. Mutant cycle analysis has led to the identification of an acetylated variant of STX with unprecedented, low-nanomolar affinity for human NaV1.7 (hNaV1.7), a channel subtype that has been implicated in pain perception. A revised toxin-receptor binding model is presented, which is consistent with the large body of SAR data that we have obtained. This new model is expected to facilitate subsequent efforts to design isoform-selective NaV inhibitors.

Keywords: guanidinium toxin; mutant cycle analysis; sodium channel.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • CHO Cells
  • Cricetulus
  • Drug Design
  • Gene Expression
  • HEK293 Cells
  • Humans
  • Kinetics
  • Molecular Docking Simulation
  • Muscle Proteins / antagonists & inhibitors
  • Muscle Proteins / chemistry*
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism
  • Mutation
  • NAV1.2 Voltage-Gated Sodium Channel / chemistry*
  • NAV1.2 Voltage-Gated Sodium Channel / genetics
  • NAV1.2 Voltage-Gated Sodium Channel / metabolism
  • NAV1.5 Voltage-Gated Sodium Channel / chemistry*
  • NAV1.5 Voltage-Gated Sodium Channel / genetics
  • NAV1.5 Voltage-Gated Sodium Channel / metabolism
  • NAV1.7 Voltage-Gated Sodium Channel / chemistry*
  • NAV1.7 Voltage-Gated Sodium Channel / genetics
  • NAV1.7 Voltage-Gated Sodium Channel / metabolism
  • Patch-Clamp Techniques
  • Protein Binding
  • Protein Conformation
  • Rats
  • Recombinant Proteins / chemistry*
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Saxitoxin / chemistry
  • Saxitoxin / pharmacology*
  • Sodium Channel Blockers / chemistry
  • Sodium Channel Blockers / pharmacology*
  • Sodium Channels / chemistry*
  • Sodium Channels / genetics
  • Sodium Channels / metabolism
  • Structure-Activity Relationship
  • Tetrodotoxin / chemistry
  • Tetrodotoxin / pharmacology

Substances

  • Muscle Proteins
  • NAV1.2 Voltage-Gated Sodium Channel
  • NAV1.5 Voltage-Gated Sodium Channel
  • NAV1.7 Voltage-Gated Sodium Channel
  • Recombinant Proteins
  • SCN5A protein, human
  • SCN9A protein, human
  • Scn2A protein, rat
  • Scn4a protein, rat
  • Sodium Channel Blockers
  • Sodium Channels
  • Saxitoxin
  • Tetrodotoxin