Prostaglandin E2-Dependent Phosphorylation of RAS Inhibition 1 (RIN1) at Ser 291 and 292 Inhibits Transforming Growth Factor-β-Induced RAS Activation Pathway in Human Synovial Fibroblasts: Role in Cell Migration

J Cell Physiol. 2017 Jan;232(1):202-15. doi: 10.1002/jcp.25412. Epub 2016 May 26.

Abstract

Prostaglandin E2 (PGE2 )-stimulated G-protein-coupled receptor (GPCR) activation inhibits pro-fibrotic TGFβ-dependent stimulation of human fibroblast to myofibroblast transition (FMT), though the precise molecular mechanisms are not fully understood. In the present study, we describe the PGE2 -dependent suppression and reversal of TGFβ-induced events such as α-sma expression, stress fiber formation, and Ras/Raf/ERK/MAPK pathway-dependent activation of myofibroblast migration. In order to elucidate post-ligand-receptor signaling pathways, we identified a predominant PKA phosphorylation motif profile in human primary fibroblasts after treatment with exogenous PGE2 (EC50 30 nM, Vmax 100 nM), mimicked by the adenyl cyclase activator forskolin (EC50 5 μM, Vmax 10 μM). We used a global phosphoproteomic approach to identify a 2.5-fold difference in PGE2 -induced phosphorylation of proteins containing the PKA motif. Deducing the signaling pathway of our migration data, we identified Ras inhibitor 1 (RIN1) as a substrate, whereby PGE2 induced its phosphorylation at Ser291 and at Ser292 by a 5.4- and 4.8-fold increase, respectively. In a series of transient and stable over expression studies in HEK293T and HeLa cells using wild-type (wt) and mutant RIN1 (Ser291/292Ala) or Ras constructs and siRNA knock-down experiments, we showed that PGE2 -dependent phosphorylation of RIN1 resulted in the abrogation of TGFβ-induced Ras/Raf signaling activation and subsequent downstream blockade of cellular migration, emphasizing the importance of such phosphosites in PGE2 suppression of wound closure. Overexpression experiments in tandem with pull-down assays indicated that specific Ser291/292 phosphorylation of RIN1 favored binding to activated Ras. In principal, understanding PGE2 -GPCR activated signaling pathways mitigating TGFβ-induced fibrosis may lead to more evidence-based treatments against the disease. J. Cell. Physiol. 232: 202-215, 2017. © 2016 Wiley Periodicals, Inc.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Movement / drug effects*
  • Colforsin / pharmacology
  • Dinoprostone / metabolism*
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism*
  • HEK293 Cells
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Phosphorylation
  • Signal Transduction / drug effects
  • Transforming Growth Factor beta / metabolism*
  • ras Proteins / metabolism*

Substances

  • Intracellular Signaling Peptides and Proteins
  • RIN1 protein, human
  • Transforming Growth Factor beta
  • Colforsin
  • ras Proteins
  • Dinoprostone