Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients

Clin Pharmacokinet. 2016 Oct;55(10):1239-1250. doi: 10.1007/s40262-016-0402-7.

Abstract

Tamoxifen (TAM) is an established endocrine treatment for all stages of oestrogen receptor (ER)-positive breast cancer. Its complex metabolism leads to the formation of multiple active and inactive metabolites. One of the main detoxification and elimination pathways of tamoxifen and its active metabolites, 4-hydroxytamoxifen (4-OHT) and endoxifen, is via glucuronidation catalysed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). However, few studies have comprehensively examined the impact of variations in the genes encoding the major hepatic UGTs on the disposition of tamoxifen and its metabolites. In the present study, we systematically sequenced exons, exon/intron boundaries, and flanking regions of UGT1A4, UGT2B7 and UGT2B15 in 240 healthy subjects of different Asian ethnicities (Chinese, Malays and Indians) to identify haplotype tagging single nucleotide polymorphisms. Subsequently, 202 Asian breast cancer patients receiving tamoxifen were genotyped for 50 selected variants in the three UGT genes to comprehensively investigate their associations with steady-state plasma levels of tamoxifen, its active metabolites and their conjugated counterparts. The UGT1A4 haplotype (containing variant 142T>G, L48 V defining the *3 allele) was strongly associated with higher plasma levels of TAM-N-glucuronide, with a twofold higher metabolic ratio of TAM-N-glucuronide/TAM observed in carriers of this haplotype upon covariate adjustment (P < 0.0001). Variants in UGT2B7 were not associated with altered O-glucuronidation of both 4-OHT and endoxifen, while UGT2B15 haplotypes had a modest effect on (E)-endoxifen plasma levels after adjustment for CYP2D6 genotypes. Our findings highlight the influence of UGT1A4 haplotypes on tamoxifen disposition in Asian breast cancer patients, while genetic variants in UGT2B7 and UGT2B15 appear to be of minor importance.

MeSH terms

  • Adult
  • Aged
  • Asian People / ethnology
  • Asian People / genetics*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / ethnology
  • Cytochrome P-450 CYP2D6 / genetics
  • Ethnicity
  • Female
  • Genotype
  • Glucuronosyltransferase / genetics*
  • Humans
  • Middle Aged
  • Pharmacogenetics
  • Polymorphism, Single Nucleotide
  • Tamoxifen / analogs & derivatives
  • Tamoxifen / blood
  • Tamoxifen / metabolism
  • Tamoxifen / pharmacokinetics*
  • Tamoxifen / therapeutic use*

Substances

  • Tamoxifen
  • afimoxifene
  • 4-hydroxy-N-desmethyltamoxifen
  • Cytochrome P-450 CYP2D6
  • UGT2B7 protein, human
  • Glucuronosyltransferase
  • UDP-glucuronosyltransferase 2B15, human