The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator

J Biol Chem. 2016 May 13;291(20):10635-45. doi: 10.1074/jbc.M115.706200. Epub 2016 Mar 28.

Abstract

Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.

Keywords: acetylation; acetyltransferase; gluconeogenesis; glucose-6-phosphatase (G6pc); methionine; methionine transamination; methylthiopropionic acid (MTP); peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) (PPARGC1α); phosphoenolpyruvate carboxykinase (Pck1); transcription coactivator.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation / drug effects
  • Animals
  • Gene Expression Regulation, Enzymologic / drug effects*
  • Gluconeogenesis / drug effects*
  • Gluconeogenesis / genetics
  • Hep G2 Cells
  • Histone Acetyltransferases / biosynthesis*
  • Histone Acetyltransferases / genetics
  • Humans
  • Liver / metabolism*
  • Methionine / pharmacology*
  • Mice
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • p300-CBP Transcription Factors / biosynthesis*
  • p300-CBP Transcription Factors / genetics

Substances

  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Transcription Factors
  • Methionine
  • GCN5 histone acetyltransferase, mouse
  • Histone Acetyltransferases
  • p300-CBP Transcription Factors
  • p300-CBP-associated factor