The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner

J Virol. 2015 Dec 23;90(5):2600-15. doi: 10.1128/JVI.02463-15.

Abstract

The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues.

Importance: The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.

MeSH terms

  • Animals
  • Brain / pathology
  • Brain / virology
  • Cells, Cultured
  • Disease Models, Animal
  • Female
  • Immunity, Innate*
  • Interferons / metabolism*
  • Macrophages / physiology
  • Macrophages / virology
  • Male
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neurons / physiology
  • Neurons / virology
  • Proteins / genetics
  • Proteins / metabolism*
  • Spinal Cord / pathology
  • Spinal Cord / virology
  • West Nile Fever / pathology
  • West Nile Fever / virology
  • West Nile virus / immunology*

Substances

  • ISG12b1 protein, mouse
  • Proteins
  • Interferons