Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes

Biopharm Drug Dispos. 2015 Dec;36(9):622-35. doi: 10.1002/bdd.1989.

Abstract

Flavonoids occur naturally as glucosides and aglycones. Their common phenolic hydroxyl groups may trigger extensive UDP-glucuronosyltransferase (UGT)- catalysed metabolism. Unlike aglycones, glucosides contain glucose moieties. However, the influence of these glucose moieties on glucuronidation of glucosides and aglycones remains unclear. In this study, the flavonoid glucoside tilianin and its aglycone acacetin were used as model compounds. The glucuronidation characteristics and enzyme kinetics of tilianin and acacetin were compared using human UGT isoforms, liver microsomes and intestinal microsomes obtained from different animal species. Tilianin and acacetin were metabolized into different glucuronides, with UGT1A8 produced as the main isoform. Assessment of enzyme kinetics in UGT1A8, human liver microsomes and human intestinal microsomes revealed that compared with tilianin, acacetin displayed lower Km (0.6-, 0.7- and 0.6-fold, respectively), higher Vmax (20-, 60- and 230-fold, respectively) and higher clearance (30-, 80- and 300-fold, respectively). Furthermore, glucuronidation of acacetin and tilianin showed significant species- and gender-dependent differences. In conclusion, glucuronidation of flavonoid aglycones is faster than that of glucosides in the intestine and the liver. Understanding the metabolism and species- and gender-dependent differences between glucosides and aglycones is crucial for the development of drugs from flavonoids.

Keywords: enzyme kinetics; flavonoids; glucuronidation; in vitro incubation.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Flavones / metabolism
  • Flavonoids / metabolism*
  • Glucosides / metabolism*
  • Glucuronosyltransferase / genetics
  • Glucuronosyltransferase / metabolism*
  • Glycosides / metabolism
  • Glycosylation
  • Humans
  • Intestinal Mucosa / enzymology
  • Intestinal Mucosa / metabolism
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Kinetics
  • Male
  • Microsomes / enzymology*
  • Microsomes / metabolism
  • Microsomes, Liver / enzymology
  • Microsomes, Liver / metabolism
  • Models, Molecular*
  • Organ Specificity
  • Recombinant Proteins / metabolism
  • Sex Factors
  • Species Specificity

Substances

  • Flavones
  • Flavonoids
  • Glucosides
  • Glycosides
  • Isoenzymes
  • Recombinant Proteins
  • tilianin
  • Glucuronosyltransferase
  • UDP-glucuronosyltransferase, UGT1A8
  • acacetin