Protein disulphide-isomerase A2 regulated intracellular tissue factor mobilisation in migrating human vascular smooth muscle cells

Thromb Haemost. 2015 Apr;113(4):891-902. doi: 10.1160/TH14-09-0776. Epub 2015 Jan 29.

Abstract

Protein-disulphide isomerase family (PDI) are an ER-stress protein that controls TF-procoagulant activity but its role in HVSMC migration and coronary artery disease remains to be elucidated. We aimed to investigate whether in human coronary smooth muscle cells (HVSMC) the ER-stress protein-disulphide isomerase family A member 2 (PDIA2) regulates tissue factor (TF) polarisation during migration and atherosclerotic remodeling. PDIA2 and TF were analysed by confocal microscopy, silenced by small interfering RNAs (siRNA) and their function analysed by transwell and migration assays in vitro and in vivo. PDIA2and TF co-localise in the front edge of motile HVSMC. Silencing PDIA2, as well as silencing TF, reduces migration. PDIA2 silenced cells show increased TF-rich microparticle shedding. In vivo cell-loaded plug implants in nude mice of PDIA2 silenced HVSMC together with microvascular endothelial cells showed a significant impairment in mature microvessel formation. PDIA2 and TF are found in remodelled atherosclerotic plaques but not in healthy coronaries. In conclusion, we demonstrate that TF is chaperoned by PDIA2 to the HVSMC membrane and to the cell migratory front. Absence of PDIA2 impairs TF intracellular trafficking to its membrane docking favoring its uncontrolled release in microparticles. TF-regulated HVSMC migration and microvessel formation is under the control of the ER-protein PDIA2.

Keywords: Remodelling; angiogenesis; microparticle shedding; protein disulphide isomerase A2; tissue factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / enzymology
  • Cell Movement*
  • Cell-Derived Microparticles / enzymology
  • Cells, Cultured
  • Coculture Techniques
  • Coronary Artery Disease / enzymology
  • Coronary Artery Disease / pathology
  • Coronary Vessels / enzymology
  • Coronary Vessels / pathology
  • Endothelial Cells / enzymology
  • Humans
  • Mice, Nude
  • Muscle, Smooth, Vascular / enzymology*
  • Muscle, Smooth, Vascular / pathology
  • Muscle, Smooth, Vascular / transplantation
  • Myocytes, Smooth Muscle / enzymology*
  • Myocytes, Smooth Muscle / pathology
  • Myocytes, Smooth Muscle / transplantation
  • Neovascularization, Physiologic
  • Plaque, Atherosclerotic
  • Protein Disulfide-Isomerases / genetics
  • Protein Disulfide-Isomerases / metabolism*
  • Protein Transport
  • RNA Interference
  • Signal Transduction
  • Thromboplastin / genetics
  • Thromboplastin / metabolism*
  • Transfection
  • Vascular Remodeling

Substances

  • Thromboplastin
  • PDIA2 protein, human
  • Protein Disulfide-Isomerases