A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease

J Clin Invest. 1989 Dec;84(6):2012-6. doi: 10.1172/JCI114393.

Abstract

A membrane-bound cytochrome b, a heterodimer formed by a 91-kD glycoprotein and a 22-kD polypeptide, is a critical component of the phagocyte NADPH-oxidase responsible for the generation of superoxide anion. Mutations in the gene for the 91-kD chain of this cytochrome result in the X-linked form of chronic granulomatous disease (CGD), in which phagocytes are unable to produce superoxide. Typically, there is a marked deficiency of the 91-kD subunit and the cytochrome spectrum is absent (X- CGD). In a variant form of CGD with X-linked inheritance, affected males have a normal visible absorbance spectrum of cytochrome b, yet fail to generate superoxide (X+ CGD). The size and abundance of the mRNA for the 91-kD subunit and its encoded protein were examined and appeared normal. To search for a putative mutation in the coding sequence of the 91-kD subunit gene, the corresponding RNA from an affected X+ male was amplified by the polymerase chain reaction and sequenced. A single nucleotide change, a C----A transversion, was identified that predicts a nonconservative Pro----His substitution at residue 415 of the encoded protein. Hybridization of amplified genomic DNA with allele-specific oligonucleotide probes demonstrated the mutation to be specific to affected X+ males and the carrier state. These results strengthen the concept that all X-linked CGD relates to mutations affecting the expression or structure of the 91-kD cytochrome b subunit. The mechanism by which the Pro 415----His mutation renders the oxidase nonfunctional is unknown, but may involve an impaired interaction with other components of the oxidase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Cytochrome b Group / genetics*
  • Granulomatous Disease, Chronic / genetics*
  • Humans
  • Male
  • Molecular Sequence Data
  • Mutation*
  • Neutrophils / analysis*
  • Phagocytes / metabolism
  • Polymerase Chain Reaction
  • RNA, Messenger / analysis
  • Superoxides / metabolism
  • X Chromosome*

Substances

  • Cytochrome b Group
  • RNA, Messenger
  • Superoxides