Mouse ERG K(+) channel clones reveal differences in protein trafficking and function

J Am Heart Assoc. 2014 Dec 11;3(6):e001491. doi: 10.1161/JAHA.114.001491.

Abstract

Background: The mouse ether-a-go-go-related gene 1a (mERG1a, mKCNH2) encodes mERG K(+) channels in mouse cardiomyocytes. The mERG channels and their human analogue, hERG channels, conduct IKr. Mutations in hERG channels reduce IKr to cause congenital long-QT syndrome type 2, mostly by decreasing surface membrane expression of trafficking-deficient channels. Three cDNA sequences were originally reported for mERG channels that differ by 1 to 4 amino acid residues (mERG-London, mERG-Waterston, and mERG-Nie). We characterized these mERG channels to test the postulation that they would differ in their protein trafficking and biophysical function, based on previous findings in long-QT syndrome type 2.

Methods and results: The 3 mERG and hERG channels were expressed in HEK293 cells and neonatal mouse cardiomyocytes and were studied using Western blot and whole-cell patch clamp. We then compared our findings with the recent sequencing results in the Welcome Trust Sanger Institute Mouse Genomes Project (WTSIMGP).

Conclusions: First, the mERG-London channel with amino acid substitutions in regions of highly ordered structure is trafficking deficient and undergoes temperature-dependent and pharmacological correction of its trafficking deficiency. Second, the voltage dependence of channel gating would be different for the 3 mERG channels. Third, compared with the WTSIMGP data set, the mERG-Nie clone is likely to represent the wild-type mouse sequence and physiology. Fourth, the WTSIMGP analysis suggests that substrain-specific sequence differences in mERG are a common finding in mice. These findings with mERG channels support previous findings with hERG channel structure-function analyses in long-QT syndrome type 2, in which sequence changes in regions of highly ordered structure are likely to result in abnormal protein trafficking.

Keywords: genetic variability; hERG; long‐QT syndrome; mERG; mouse.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Cloning, Molecular*
  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels / genetics
  • Ether-A-Go-Go Potassium Channels / metabolism*
  • Genetic Predisposition to Disease
  • HEK293 Cells
  • Humans
  • Ion Channel Gating
  • Long QT Syndrome / genetics
  • Long QT Syndrome / metabolism*
  • Membrane Potentials
  • Mice, 129 Strain
  • Mutation
  • Myocytes, Cardiac / metabolism*
  • Phenotype
  • Protein Transport
  • Sequence Analysis, DNA
  • Time Factors
  • Transfection

Substances

  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels
  • KCNH2 protein, human
  • Kcnh2 protein, mouse

Supplementary concepts

  • Long Qt Syndrome 2