Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits

Mol Autism. 2014 May 1:5:32. doi: 10.1186/2040-2392-5-32. eCollection 2014.

Abstract

Background: As elegant structures designed for neural communication, synapses are the building bricks of our mental functions. Recently, many studies have pointed out that synaptic protein-associated mutations may lead to dysfunctions of social cognition. Dlgap2, which encodes one of the main components of scaffold proteins in postsynaptic density (PSD), has been addressed as a candidate gene in autism spectrum disorders. To elucidate the disturbance of synaptic balance arising from Dlgap2 loss-of-function in vivo, we thus generated Dlgap2 (-/-) mice to investigate their phenotypes of synaptic function and social behaviors.

Methods: The creation of Dlgap2 (-/-) mice was facilitated by the recombineering-based method, Cre-loxP system and serial backcross. Reversal learning in a water T-maze was used to determine repetitive behaviors. The three-chamber approach task, resident-intruder test and tube task were performed to characterize the social behaviors of mutant mice. Cortical synaptosomal fraction, Golgi-Cox staining, whole-cell patch electrophysiology and transmission electron microscopy were all applied to investigate the function and structure of synapses in the orbitofrontal cortex (OFC) of Dlgap2 (-/-) mice.

Results: Dlgap2 (-/-) mice displayed exacerbated aggressive behaviors in the resident-intruder task, and elevated social dominance in the tube test. In addition, Dlgap2 (-/-) mice exhibited a clear reduction of receptors and scaffold proteins in cortical synapses. Dlgap2 (-/-) mice also demonstrated lower spine density, decreased peak amplitude of miniature excitatory postsynaptic current and ultra-structural deficits of PSD in the OFC.

Conclusions: Our findings clearly demonstrate that Dlgap2 plays a vital role in social behaviors and proper synaptic functions of the OFC. Moreover, these results may provide valuable insights into the neuropathology of autism.

Keywords: Dlgap2; aggressive behavior; mouse model; orbitofrontal cortex, autism; synapse.