Design of a test system for the development of advanced video chips and software algorithms

Surg Innov. 2015 Apr;22(2):155-62. doi: 10.1177/1553350614537563. Epub 2014 Jun 5.

Abstract

Background: Visual deterioration is a crucial point in minimally invasive surgery impeding surgical performance. Modern image processing technologies appear to be promising approaches for further image optimization by digital elimination of disturbing particles. To make them mature for clinical application, an experimental test environment for evaluation of possible image interferences would be most helpful.

Methods: After a comprehensive review of the literature (MEDLINE, IEEE, Google Scholar), a test bed for generation of artificial surgical smoke and mist was evolved. Smoke was generated by a fog machine and mist produced by a nebulizer. The size of resulting droplets was measured microscopically and compared with biological smoke (electrocautery) and mist (ultrasound dissection) emerging during minimally invasive surgical procedures.

Results: The particles resulting from artificial generation are in the range of the size of biological droplets. For surgical smoke, the droplet dimension produced by the fog machine was 4.19 µm compared with 4.65 µm generated by electrocautery during a surgical procedure. The size of artificial mist produced by the nebulizer ranged between 45.38 and 48.04 µm compared with the range between 30.80 and 56.27 µm that was generated during minimally invasive ultrasonic dissection.

Conclusion: A suitable test bed for artificial smoke and mist generation was developed revealing almost identical droplet characteristics as produced during minimally invasive surgical procedures. The possibility to generate image interferences comparable to those occurring during laparoscopy (electrocautery and ultrasound dissection) provides a basis for the future development of image processing technologies for clinical applications.

Keywords: artificial generation; digital image processing; minimally invasive surgery; surgical smoke and mist.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue
  • Aerosols
  • Algorithms*
  • Animals
  • Electrocoagulation
  • Humans
  • Image Processing, Computer-Assisted* / instrumentation
  • Image Processing, Computer-Assisted* / standards
  • Minimally Invasive Surgical Procedures* / instrumentation
  • Minimally Invasive Surgical Procedures* / standards
  • Models, Biological
  • Smoke
  • Software*
  • Swine
  • Ultrasonic Therapy
  • Video Recording* / instrumentation
  • Video Recording* / methods

Substances

  • Aerosols
  • Smoke