CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) by biocomputation

Cell Biochem Biophys. 2014 Nov;70(2):1011-6. doi: 10.1007/s12013-014-0011-8.

Abstract

We data-analyzed and constructed the high-expression CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) compared with low-expression (fold change ≥ 2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set, using integration of gene regulatory network inference method with gene ontology (GO). Our result showed that CAMK1 transport subnetwork upstream KCNQ3, LCN2, NKX2_5, NUP62, SORT1, STX1A activated CAMK1, and downstream CAMK1-activated AFP, ENAH, KPNA2, SLC4A3; CAMK1 signal subnetwork upstream BRCA1, DKK1, GPSM2, LEF1, NR5A1, NUP62, SORT1, SSTR5, TBL3 activated CAMK1, and downstream CAMK1-activated MAP2K6, SFRP4, SSTR5, TSHB, UBE2C in HCC. We proposed that CAMK1 activated network enhanced endosome to lysosome transport, endosome transport via multivesicular body sorting pathway, Golgi to endosome transport, intracellular protein transmembrane transport, intracellular protein transport, ion transport, mRNA transport, plasma membrane to endosome transport, potassium ion transport, protein transport, vesicle-mediated transport, anion transport, intracellular transport, androgen receptor signaling pathway, cell surface receptor-linked signal transduction, hormone-mediated signaling, induction of apoptosis by extracellular signals, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, signal transduction resulting in induction of apoptosis, phosphoinositide-mediated signaling, Wnt receptor signaling pathway, as a result of inducing phosphoinositide signal-mediated protein sorting, and transport in HCC. Our hypothesis was verified by CAMK1 functional regulation subnetwork containing positive regulation of calcium ion transport via voltage gated calcium channel, cell proliferation, DNA repair, exocytosis, I-kappaB kinase/NF-kappaB cascade, immunoglobulin-mediated immune response, mast cell activation, natural killer cell-mediated cytotoxicity directed against tumor cell target, protein ubiquitination, sodium ion transport, survival gene product activity, T cell-mediated cytotoxicity, transcription, transcription from RNA polymerase II promoter, transcription initiation from RNA polymerase II promoter, transcription via serum response element binding, exit from mitosis, ubiquitin ligase activity during mitotic cell cycle, regulation of angiogenesis, apoptosis, cell growth, cell proliferation, cyclin-dependent protein kinase activity, gene expression, insulin secretion, steroid biosynthesis, transcription from RNA polymerase II promoter, transcription from RNA polymerase III promoter, cell cycle, cell migration, DNA recombination, and protein metabolism; also by CAMK1 negative functional regulation subnetwork including negative regulation of apoptosis, cell proliferation, centriole replication, fatty acid biosynthesis, lipoprotein lipase activity, MAPK activity, progression through cell cycle, transcription, transcription from RNA polymerase II promoter, cell growth, phosphorylation, and ubiquitin ligase activity during mitotic cell cycle in HCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium-Calmodulin-Dependent Protein Kinase Type 1 / metabolism*
  • Carcinoma, Hepatocellular / metabolism*
  • Carcinoma, Hepatocellular / pathology
  • Computational Biology*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms / metabolism*
  • Liver Neoplasms / pathology
  • Phosphatidylinositols / metabolism*
  • Protein Transport
  • Signal Transduction*

Substances

  • Phosphatidylinositols
  • CAMK1 protein, human
  • Calcium-Calmodulin-Dependent Protein Kinase Type 1