RING finger protein 10 regulates retinoic acid-induced neuronal differentiation and the cell cycle exit of P19 embryonic carcinoma cells

J Cell Biochem. 2013 Sep;114(9):2007-15. doi: 10.1002/jcb.24544.

Abstract

Rnf10 is a member of the RING finger protein family. Recently, a number of RING finger proteins were reported to be involved in neuronal differentiation, development, and proliferation. In this study, we observed that the mRNA levels and protein expression of Rnf10 increase significantly upon the retinoic acid-induced neuronal differentiation of P19 cells. Knockdown of Rnf10 by RNA interference significantly impaired neuronal differentiation of P19 cells by attenuating the expression of neuronal markers. Cell cycle profiling revealed that Rnf10-depleted cells were unable to establish cell cycle arrest after RA treatment. In agreement with flow cytometry analysis, increased cell proliferation was observed after RA induction in Rnf10 knockdown cells as determined by a BrdU incorporation assay. Moreover, like Rnf10, the mRNA levels and protein expression of p21 and p27 also increased upon RA induction. Rnf10 knockdown only resulted in a reduction of p21 expression, while p27 and p57 expression remained unchanged, indicating that Rnf10 may regulate cell cycle exit through the p21 pathway. Ectopic p21 expression partially rescued the effect of Rnf10 depletion on the neuronal differentiation of P19 cells. Collectively, these results showed that increase in Rnf10 expression upon RA induction is necessary for the positive regulation of cyclin kinase inhibitor p21 expression, which leads to cell cycle arrest and is critical for neuronal differentiation.

Keywords: NEURONAL DIFFERENTIATION; P19 EMBRYONIC CARCINOMA CELLS; RETINOIC ACID; RING FINGER PROTEIN 10.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Cell Cycle / drug effects*
  • Cell Differentiation / drug effects*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Embryonal Carcinoma Stem Cells / cytology*
  • Embryonal Carcinoma Stem Cells / drug effects
  • Flow Cytometry
  • Mice
  • Mice, Inbred C57BL
  • Neurons / cytology*
  • Neurons / drug effects*
  • Real-Time Polymerase Chain Reaction
  • Tretinoin / pharmacology*

Substances

  • Carrier Proteins
  • Rnf10 protein, mouse
  • Tretinoin