Sialoadhesin ligand expression identifies a subset of CD4+Foxp3- T cells with a distinct activation and glycosylation profile

J Immunol. 2013 Mar 15;190(6):2593-602. doi: 10.4049/jimmunol.1201172. Epub 2013 Feb 13.

Abstract

Sialoadhesin (Sn) is a sialic acid-binding Ig-like lectin expressed selectively on macrophage subsets. In a model of experimental autoimmune encephalomyelitis, Sn interacted with sialylated ligands expressed selectively on CD4(+)Foxp3(+) regulatory T cells (Tregs) and inhibited their proliferation. In this study, we examined the induction of Sn ligands (SnL) on all splenic CD4(+) T cells following in vitro activation. Most CD4(+) Tregs strongly upregulated SnL, whereas only a small subset of ~20% CD4(+)Foxp3(-) T cells (effector T cells [Teffs]) upregulated SnL. SnL(+) Teffs displayed higher levels of activation markers CD25 and CD69, exhibited increased proliferation, and produced higher amounts of IL-2 and IFN-γ than corresponding SnL(-) Teffs. Coculture of activated Teffs with Sn(+) macrophages or Sn(+) Chinese hamster ovary cells resulted in increased cell death, suggesting a regulatory role for Sn-SnL interactions. The key importance of α2,3-sialylation in SnL expression was demonstrated by increased binding of α2,3-linkage-specific Maackia amurensis lectin, increased expression of α2,3-sialyltransferase ST3GalVI, and loss of SnL following treatment with an α2,3-linkage-specific sialidase. The induction of SnL on activated CD4(+) T cells was dependent on N-glycan rather than O-glycan biosynthesis and independent of the mucin-like molecules CD43 and P-selectin glycoprotein ligand-1, previously implicated in Sn interactions. Induction of ligands on CD4(+)Foxp3(-) Teffs was also observed in vivo using the New Zealand Black × New Zealand White F1 murine model of spontaneous lupus and SnL levels on Teffs correlated strongly with the degree of proteinuria. Collectively, these data indicate that SnL is a novel marker of activated CD4(+) Teffs that are implicated in the pathogenesis of autoimmune diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Marrow Cells / immunology
  • Bone Marrow Cells / metabolism
  • Bone Marrow Cells / pathology
  • CD4-Positive T-Lymphocytes / immunology*
  • CD4-Positive T-Lymphocytes / metabolism*
  • CD4-Positive T-Lymphocytes / pathology
  • CHO Cells
  • Cell Communication / immunology
  • Cell Death / genetics
  • Cell Death / immunology
  • Cricetinae
  • Encephalomyelitis, Autoimmune, Experimental / immunology*
  • Encephalomyelitis, Autoimmune, Experimental / metabolism*
  • Encephalomyelitis, Autoimmune, Experimental / pathology
  • Forkhead Transcription Factors / deficiency
  • Forkhead Transcription Factors / metabolism*
  • Glycosylation
  • Ligands
  • Lymphocyte Activation / genetics
  • Lymphocyte Activation / immunology*
  • Macrophages / immunology
  • Macrophages / metabolism
  • Macrophages / pathology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NZB
  • Mice, Knockout
  • Sialic Acid Binding Ig-like Lectin 1 / biosynthesis*
  • Sialic Acid Binding Ig-like Lectin 1 / deficiency

Substances

  • Forkhead Transcription Factors
  • Foxp3 protein, mouse
  • Ligands
  • Sialic Acid Binding Ig-like Lectin 1
  • Siglec1 protein, mouse