Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas

Cancer Res. 2013 Jan 15;73(2):496-501. doi: 10.1158/0008-5472.CAN-12-2852. Epub 2012 Nov 30.

Abstract

Point mutations at Arg132 of the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) occur frequently in gliomas and result in a gain of function to produce the "oncometabolite" D-2-hydroxyglutarate (D-2HG). The mutated IDH1 allele is usually associated with a wild-type IDH1 allele (heterozygous) in cancer. Here, we identify 2 gliomas that underwent loss of the wild-type IDH1 allele but retained the mutant IDH1 allele following tumor progression from World Health Organization (WHO) grade III anaplastic astrocytomas to WHO grade IV glioblastomas. Intratumoral D-2HG was 14-fold lower in the glioblastomas lacking wild-type IDH1 than in glioblastomas with heterozygous IDH1 mutations. To characterize the contribution of wild-type IDH1 to cancer cell D-2HG production, we established an IDH1-mutated astrocytoma (IMA) cell line from a WHO grade III anaplastic astrocytoma. Disruption of the wild-type IDH1 allele in IMA cells by gene targeting resulted in an 87-fold decrease in cellular D-2HG levels, showing that both wild-type and mutant IDH1 alleles are required for D-2HG production in glioma cells. Expression of wild-type IDH1 was also critical for mutant IDH1-associated D-2HG production in the colorectal cancer cell line HCT116. These insights may aid in the development of therapeutic strategies to target IDH1-mutated cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astrocytoma / genetics
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / metabolism
  • Cell Line, Tumor
  • Genotype
  • Glioblastoma / genetics
  • Glioma / genetics*
  • Glioma / metabolism
  • Glutarates / metabolism*
  • Humans
  • Isocitrate Dehydrogenase / genetics*
  • Isocitrate Dehydrogenase / metabolism
  • Mutation*

Substances

  • Glutarates
  • alpha-hydroxyglutarate
  • Isocitrate Dehydrogenase