Translocation t(11;14) (q13;q32) and genomic imbalances in multi-ethnic multiple myeloma patients: a Malaysian study

Hematol Rep. 2012 Jul 11;4(3):e19. doi: 10.4081/hr.2012.e19. Epub 2012 Sep 28.

Abstract

More than 50% of myeloma cases have normal karyotypes under conventional cytogenetic analysis due to low mitotic activity and content of plasma cells in the bone marrow. We used a polymerase chain reaction (PCR)-based translocation detection assay to detect BCL1/JH t(11;14) (q13;q32) in 105 myeloma patients, and randomly selected 8 translocation positive samples for array comparative genomic hybridization (aCGH) analysis. Our findings revealed 14.3% of myeloma samples were positive for BCL1/JH t(11;14) (q13;q32) translocation (n=15 of 105). We found no significant correlation between this translocation with age (P=0.420), gender (P=0.317), ethnicity (P=0.066) or new/relapsed status of multiple myeloma (P=0.412) at 95% confidence interval level by χ(2)test. In addition, aCGH results showed genomic imbalances in all samples analyzed. Frequent chromosomal gains were identified at regions 1q, 2q, 3p, 3q, 4p, 4q, 5q, 7q, 9q, 11q, 13q, 15q, 21q, 22q and Xq, while chromosomal losses were detected at 4q and 14q. Copy number variations at genetic loci that contain NAMPT, IVNS1ABP and STK17B genes are new findings that have not previously been reported in myeloma patients. Besides fluorescence in situ hybridization, PCR is another rapid, sensitive and simple technique that can be used for detecting BCL1/JH t(11;14)(q13;q32) translocation in multiple myeloma patients. Genes located in the chromosomal aberration regions in our study, such as NAMPT, IVNS1ABP, IRF2BP2, PICALM, STAT1, STK17B, FBXL5, ACSL1, LAMP2, SAMSN1 and ATP8B4 might be potential prognostic markers and therapeutic targets in the treatment and management of multiple myeloma patients positive for BCL1/JH t(11;14) (q13;q32) translocation.

Keywords: IVNS1ABP; NAMPT; STK17B; copy number variations.; immunoglobulin heavy chain.