Association between single nucleotide polymorphisms in ERCC4 and risk of squamous cell carcinoma of the head and neck

PLoS One. 2012;7(7):e41853. doi: 10.1371/journal.pone.0041853. Epub 2012 Jul 27.

Abstract

Background: Excision repair cross-complementation group 4 gene (ERCC4/XPF) plays an important role in nucleotide excision repair and participates in removal of DNA interstrand cross-links and DNA double-strand breaks. Single nucleotide polymorphisms (SNPs) in ERCC4 may impact repair capacity and affect cancer susceptibility.

Methodology/principal findings: In this case-control study, we evaluated associations of four selected potentially functional SNPs in ERCC4 with risk of squamous cell carcinoma of the head and neck (SCCHN) in 1,040 non-Hispanic white patients with SCCHN and 1,046 cancer-free matched controls. We found that the variant GG genotype of rs2276466 was significantly associated with a decreased risk of SCCHN (OR = 0.69, 95% CI 0.50-0.96), and that the variant TT genotype of rs3136038 showed a borderline significant decreased risk with SCCHN (OR = 0.76, 95% CI: 0.58-1.01) in the recessive model. Such protective effects were more evident in oropharyngeal cancer (OR = 0.61, 95% CI: 0.40-0.92 for rs2276466; OR = 0.69, 95% CI: 0.48-0.98 for rs3136038). No significant associations were found for the other two SNPs (rs1800067 and rs1799798). In addition, individuals with the rs2276466 GG or with the rs3136038 TT genotypes had higher levels of ERCC4 mRNA expression than those with the corresponding wild-type genotypes in 90 Epstein-Barr virus-transformed lymphoblastoid cell lines derived from Caucasians.

Conclusions: These results suggest that these two SNPs (rs2276466 and rs3136038) in ERCC4 may be functional and contribute to SCCHN susceptibility. However, our findings need to be replicated in further large epidemiological and functional studies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Carcinoma, Squamous Cell / genetics*
  • DNA-Binding Proteins / genetics*
  • Female
  • Gene Expression Regulation, Neoplastic / genetics
  • Genetic Predisposition to Disease / genetics*
  • Head and Neck Neoplasms / genetics*
  • Humans
  • Male
  • Middle Aged
  • Polymorphism, Single Nucleotide*
  • Young Adult

Substances

  • DNA-Binding Proteins
  • xeroderma pigmentosum group F protein