OSR1-sensitive regulation of Na+/H+ exchanger activity in dendritic cells

Am J Physiol Cell Physiol. 2012 Aug 15;303(4):C416-26. doi: 10.1152/ajpcell.00420.2011. Epub 2012 May 30.

Abstract

The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs were cultured from bone marrow of heterozygous WNK-resistant OSR1 knockin mice (osr(KI)) and wild-type mice (osr(WT)). Cell volume was estimated from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein fluorescence, and Na(+)/H(+) exchanger activity from Na(+)-dependent realkalinization following ammonium pulse and migration utilizing transwell chambers. DCs expressed WNK1, WNK3, NCC, NKCC1, and OSR1. Phosphorylated NKCC1 was reduced in osr(KI) DCs. Cell volume and pH(i) were similar in osr(KI) and osr(WT) DCs, but Na(+)/H(+) exchanger activity and ROS production were higher in osr(KI) than in osr(WT) DCs. Before LPS treatment, migration was similar in osr(KI) and osr(WT) DCs. LPS (1 μg/ml), however, increased migration of osr(WT) DCs but not of osr(KI) DCs. Na(+)/H(+) exchanger 1 inhibitor cariporide (10 μM) decreased cell volume, intracellular reactive oxygen species (ROS) formation, Na(+)/H(+) exchanger activity, and pH(i) to a greater extent in osr(KI) than in osr(WT) DCs. LPS increased cell volume, Na(+)/H(+) exchanger activity, and ROS formation in osr(WT) DCs but not in osr(KI) DCs and blunted the difference between osr(KI) and osr(WT) DCs. Na(+)/H(+) exchanger activity in osr(WT) DCs was increased by the NKCC1 inhibitor furosemide (100 nM) to values similar to those in osr(KI) DCs. Oxidative stress (10 μM tert-butyl-hydroperoxide) increased Na(+)/H(+) exchanger activity in osr(WT) DCs but not in osr(KI) DCs and reversed the difference between genotypes. Cariporide virtually abrogated Na(+)/H(+) exchanger activity in both genotypes and blunted LPS-induced cell swelling and ROS formation in osr(WT) mice. In conclusion, partial OSR1 deficiency influences Na(+)/H(+) exchanger activity, ROS formation, and migration of dendritic cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / metabolism
  • Animals
  • Biological Transport
  • Bone Marrow Cells / cytology*
  • Cell Size
  • Cytosol / physiology
  • Dendritic Cells / metabolism*
  • Gene Expression Regulation / physiology
  • Hydrogen-Ion Concentration
  • Mice
  • Mice, Transgenic
  • Potassium / metabolism
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Reactive Oxygen Species
  • Sodium / metabolism
  • Sodium-Hydrogen Exchangers / genetics
  • Sodium-Hydrogen Exchangers / metabolism*

Substances

  • Reactive Oxygen Species
  • Sodium-Hydrogen Exchangers
  • Ammonia
  • Sodium
  • OXSR1 protein, mouse
  • Protein Serine-Threonine Kinases
  • Potassium