Rasd1 interacts with Ear2 (Nr2f6) to regulate renin transcription

BMC Mol Biol. 2011 Jan 19:12:4. doi: 10.1186/1471-2199-12-4.

Abstract

Background: The Rasd1 protein is a dexamethasone induced monomeric Ras-like G protein that oscillates in the suprachiasmatic nucleus (SCN). Previous studies have shown that Rasd1 modulates multiple signaling cascades. However, it is still unclear exactly how Rasd1 carries out its function. Studying protein-protein interactions involving Rasd1 may provide insights into its biological functions in different contexts.

Results: To further explore the molecular function of Rasd1, we performed a yeast two-hybrid screen and identified Ear2, a negative regulator of renin transcription, as an interaction partner of Rasd1. We validated the interaction in vitro and in transfected COS-7 cells. We further confirmed the interaction of endogenous Rasd1 and Ear2 from HEK293T cell and mouse brain extract. Rasd1 inhibited transcriptional repression by Ear2 on a renin promoter-luciferase reporter construct both in the presence and absence of all-trans-retinoic acid. Moreover, real-time RT-PCR showed upregulation of endogenous renin transcription in As4.1 cells over-expressing Rasd1. We demonstrated that the ligand binding domain of Ear2 is required for physical and functional interaction between the two proteins. In addition, we demonstrated that shRNA-mediated knockdown of Rasd1 results in further repression of Ear2-mediated renin transcription, whereas induction of Rasd1 by dexamethasone counteracts the effects of shRNA-mediated Rasd1 knockdown. Finally, our study showed that Rasd1 missense mutations not only attenuate their physical interaction with Ear2 but also abolish their ability to counteract repression of renin transcription mediated by Ear2.

Conclusions: Our study provides evidence for physical and functional interactions between Rasd1 and Ear2. The results suggest that their interactions are involved in renin transcriptional regulation. These findings not only reveal a novel role for Rasd1-medated signaling but also provide the basis for potential intervention of renin expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COS Cells
  • COUP Transcription Factors / genetics*
  • Chlorocebus aethiops
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Gene Expression Regulation
  • Gene Knockdown Techniques
  • Genes, Reporter
  • HEK293 Cells
  • Humans
  • Mice
  • RNA, Small Interfering / metabolism
  • Receptors, Steroid / genetics*
  • Renin / genetics*
  • Renin / metabolism
  • Repressor Proteins
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • Transcription, Genetic
  • Tretinoin / metabolism
  • Two-Hybrid System Techniques
  • ras Proteins / genetics*

Substances

  • COUP Transcription Factors
  • DNA-Binding Proteins
  • NR2F6 protein, human
  • Nr2f6 protein, mouse
  • RASD1 protein, human
  • RNA, Small Interfering
  • Receptors, Steroid
  • Repressor Proteins
  • Tretinoin
  • Renin
  • Rasd1 protein, mouse
  • ras Proteins