Gamma-radiation sensitivity and polymorphisms in RAD51L1 modulate glioma risk

Carcinogenesis. 2010 Oct;31(10):1762-9. doi: 10.1093/carcin/bgq141. Epub 2010 Jul 7.

Abstract

Background: DNA strand breaks pose the greatest threat to genomic stability. Genetically determined mutagen sensitivity predisposes individuals to a variety of cancers, including glioma. However, polymorphisms in DNA strand break repair genes that may determine mutagen sensitivity are not well studied in cancer risk, especially in gliomas.

Methods: We correlated genotype data for tag single-nucleotide polymorphisms (tSNPs) of DNA strand break repair genes with a gamma-radiation-induced mutagen sensitivity phenotype [expressed as mean breaks per cell (B/C)] in samples from 426 glioma patients. We also conducted analysis to assess joint and haplotype effects of single-nucleotide polymorphisms (SNPs) on mutagen sensitivity. We further validate our results in an independent external control group totaling 662 subjects.

Results: Of the 392 tSNPs examined, we found that mutagen sensitivity was modified by one tSNP in the EME2 gene and six tSNPs in the RAD51L1 gene (P < 0.01). Among the six RAD51L1 SNPs tested in the validation set, one (RAD51L1 rs2180611) was significantly associated with mutagen sensitivity (P = 0.025). Moreover, we found a significant dose-response relationship between the mutagen sensitivity and the number of adverse tSNP genotypes. Furthermore, haplotype analysis revealed that RAD51L1 haplotypes F-A (zero adverse allele) and F-E (six adverse alleles) exhibited the lowest (0.42) and highest (0.93) mean B/C values, respectively. A similar dose-response relationship also existed between the mutagen sensitivity and the number of adverse haplotypes.

Conclusion: These results suggest that polymorphisms in and haplotypes of the RAD51L1 gene, which is involved in the double-strand break repair pathway, modulate gamma-radiation-induced mutagen sensitivity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Brain Neoplasms / etiology
  • Brain Neoplasms / genetics*
  • DNA Breaks, Double-Stranded / radiation effects*
  • DNA-Binding Proteins / genetics*
  • Female
  • Gamma Rays / adverse effects*
  • Glioma / etiology
  • Glioma / genetics*
  • Haplotypes
  • Humans
  • Linkage Disequilibrium
  • Male
  • Middle Aged
  • Polymorphism, Single Nucleotide*
  • Risk

Substances

  • DNA-Binding Proteins
  • RAD51B protein, human