Coordinating DNA polymerase traffic during high and low fidelity synthesis

Biochim Biophys Acta. 2010 May;1804(5):1167-79. doi: 10.1016/j.bbapap.2009.06.010. Epub 2009 Jun 21.

Abstract

With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • DNA / genetics
  • DNA / metabolism*
  • DNA Replication*
  • DNA-Directed DNA Polymerase / chemistry
  • DNA-Directed DNA Polymerase / genetics
  • DNA-Directed DNA Polymerase / metabolism*
  • Humans

Substances

  • DNA
  • DNA-Directed DNA Polymerase