Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier

Biochem J. 2009 Feb 15;418(1):125-33. doi: 10.1042/BJ20081262.

Abstract

The SCaMCs (small calcium-binding mitochondrial carriers) constitute a subfamily of mitochondrial carriers responsible for the ATP-Mg/P(i) exchange with at least three paralogues in vertebrates. SCaMC members are proteins with two functional domains, the C-terminal transporter domain and the N-terminal domain which harbours calcium-binding EF-hands and faces the intermembrane space. In the present study, we have characterized a shortened fourth paralogue, SCaMC-3L (SCaMC-3-like; also named slc25a41), which lacks the calcium-binding N-terminal extension. SCaMC-3L orthologues are found exclusively in mammals, showing approx. 60% identity to the C-terminal half of SCaMC-3, its closest paralogue. In mammalian genomes, SCaMC-3 and SCaMC-3L genes are adjacent on the same chromosome, forming a head-to-tail tandem array, and show identical exon-intron boundaries, indicating that SCaMC-3L could have arisen from an SCaMC-3 ancestor by a partial duplication event which occurred prior to mammalian radiation. Expression and functional data suggest that, following the duplication event, SCaMC-3L has acquired more restrictive functions. Unlike the broadly expressed longer SCaMCs, mouse SCaMC-3L shows a limited expression pattern; it is preferentially expressed in testis and, at lower levels, in brain. SCaMC-3L transport activity was studied in yeast deficient in Sal1p, the calcium-dependent mitochondrial ATP-Mg/P(i) carrier, co-expressing SCaMC-3L and mitochondrial-targeted luciferase, and it was found to perform ATP-Mg/P(i) exchange, in a similar manner to Sal1p or other ATP-Mg/P(i) carriers. However, metabolite transport through SCaMC-3L is calcium-independent, representing a novel mechanism involved in adenine nucleotide transport across the inner mitochondrial membrane, different to ADP/ATP translocases or long SCaMC paralogues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism*
  • Amino Acid Sequence
  • Animals
  • Anion Transport Proteins / chemistry
  • Anion Transport Proteins / genetics
  • Anion Transport Proteins / metabolism*
  • Brain / metabolism
  • Calcium / metabolism
  • Cell Line
  • Chlorocebus aethiops
  • Gene Expression Regulation
  • Humans
  • Magnesium / metabolism*
  • Male
  • Mice
  • Mitochondria / metabolism*
  • Mitochondrial ADP, ATP Translocases / genetics
  • Mitochondrial ADP, ATP Translocases / metabolism*
  • Models, Molecular
  • Molecular Sequence Data
  • Organ Specificity
  • Phosphorus / metabolism*
  • Phylogeny
  • Protein Structure, Tertiary
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Testis / metabolism

Substances

  • Anion Transport Proteins
  • Slc25a41 protein, mouse
  • Phosphorus
  • Adenosine Triphosphate
  • Mitochondrial ADP, ATP Translocases
  • Magnesium
  • Calcium